This study investigated the specific and differential gene expression in human immature DCs (iDCs) in response to treatment with a butanol fraction containing defined bioactive phytocompounds extracted from stems and leaves of Echinacea purpurea
Genomics and proteomics of immune modulatory effects of a butanol fraction of echinacea purpurea in human dendritic cells.
No sample metadata fields
View SamplesWe found NF-kB signaling as a major target of miR-26 based on an analysis of the changes in gene activation by TNF-a in response to alteration of miR-26 levels. Overall design: Transcriptional profiling of genes in response to either a miR-26 mimic or miR-26 antagomir.
MiR-26 down-regulates TNF-α/NF-κB signalling and IL-6 expression by silencing HMGA1 and MALT1.
No sample metadata fields
View SamplesHere we report that Nono instead functions as a chromatin regulator cooperating with Erk to regulate mESC pluripotency. We demonstrate that Nono loss leads to robust self-renewing mESCs with enhanced expression of Nanog and Klf4, epigenome and transcriptome re-patterning to a “ground-like state” with global reduction of H3K27me3 and DNA methylation resembling the Erk inhibitor PD03 treated mESCs and 2i (both GSK and Erk kinase inhibitors)-induced “ground state”. Mechanistically, Nono and Erk co-bind at a subset of development-related, bivalent genes. Ablation of Nono compromises Erk activation and RNA polymerase II C-terminal Domain serine 5 phosphorylation, and while inactivation of Erk evicts Nono from chromatin, revealing reciprocal regulation. Furthermore, Nono loss results in a compromised activation of its target bivalent genes upon differentiation and the differentiation itself. These findings reveal an unanticipated role of Nono in collaborating with Erk signaling to regulate the integrity of bivalent domain and mESC pluripotency. Overall design: mRNA-seq of parental and Nono-KO mES cells
Nono, a Bivalent Domain Factor, Regulates Erk Signaling and Mouse Embryonic Stem Cell Pluripotency.
Specimen part, Subject
View SamplesWe conditionally inactivated mouse Cdx2, a dominant regulator of intestinal development, and mapped its genome occupancy in adult intestinal villi. Although homeotic transformation, observed in Cdx2-null embryos, was absent in mutant adults, gene expression and cell morphology were vitally compromised. Lethality was accelerated in mice lacking both Cdx2 and its homolog Cdx1, with exaggeration of defects in crypt cell replication and enterocyte differentiation. Cdx2 occupancy correlated with hundreds of transcripts that fell but not with equal numbers that rose with Cdx loss, indicating a predominantly activating role at intestinal cis-regulatory regions. Integrated consideration of a mutant phenotype and cistrome hence reveals the continued and distinct requirement in adults of a master developmental regulator that activates tissue-specific genes.
Essential and redundant functions of caudal family proteins in activating adult intestinal genes.
Specimen part
View SamplesAs Trypanosoma cruzi, the etiological agent of Chagas disease, multiplies in the cytoplasm of nucleated host cells, infection with this parasite is highly likely to affect host cells. We performed an exhaustive transcriptome analysis of T. cruzi-infected HeLa cells using an oligonucleotide microarray containing probes for greater than 47,000 human gene transcripts. In comparison with uninfected cells, those infected with T. cruzi showed greater than threefold up-regulation of 41 genes and greater than threefold down-regulation of 23 genes. Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) of selected, differentially expressed genes confirmed the microarray data. Many of these up- and down-regulated genes were related to cellular proliferation, including seven up-regulated genes encoding proliferation inhibitors and three down-regulated genes encoding proliferation promoters, strongly suggesting that T. cruzi infection inhibits host cell proliferation, which may allow more time for T. cruzi to replicate and produce its intracellular nests. These findings provide new insight into the molecular mechanisms by which intracellular T. cruzi infection influences the host cell, leading to pathogenicity.
Transcriptome profile of Trypanosoma cruzi-infected cells: simultaneous up- and down-regulation of proliferation inhibitors and promoters.
No sample metadata fields
View SamplesOur previous investigation indicated that high-virulence C. gattii (C. gattii TIMM 4097) tend to reside in the alveoli, whereas low-virulence C. gattii (C. gattii TIMM 4903) tend to be washed out from the alveoli and move into the central side of the respiratory system. To test this hypothesis, we performed microarray assay.
How histopathology can contribute to an understanding of defense mechanisms against cryptococci.
Sex, Specimen part
View SamplesTazarotene-induced gene 1 (TIG1), also named as retinoic acid receptor responder 1 (RARRES1), is a retinoid inducible type II tumor suppressor gene; the TIG1B isoform inhibits growth and invasion of cancer cells. Expression of TIG1B is frequently downregulated in various cancer tissues; however, the expression and activities of the TIG1A isoform has yet to be analyzed. This study investigated the effects of TIG1A and TIG1B isoforms on gene expression profiles of colon cancer cells. TIG1A, TIG1B and control stable clones derived from HCT116 colon cells were established using the GeneSwitch system. TIG1 isoform expression was induced upon 5 micro Molar of mifepristone (MFP) treatment for 24 hr. Biological triplicate samples were prepared and gene expression profiles were determined by microarray using human genome HGU133 plus 2 array (Affymatrix). Upon induction of TIG1A and TIG1B expression for 24 hr, a total of 129 and 55 genes were significantly altered, respectively. Of the genes analyzed, 23 and 6 genes were up- and downregulated, respectively in both TIG1A and TIG1B expressing cells.
G protein-coupled receptor kinase 5 mediates Tazarotene-induced gene 1-induced growth suppression of human colon cancer cells.
Cell line, Time
View SamplesThe agonistic anti-human CD3 antibody , OKT-3, has been used to control acute transplant rejection. The in vivo administration of OKT-3 was previously shown to induce the partial depletion of T cells and anergy in the remaining CD4+ T cells. However, this therapy is also associated with the systemic release of several cytokines, which leads to a series of adverse side effects. We established a novel anti-human CD3 Ab, 20-2b2 (#1 abs), which recognized a close, but different determinant on the CD3 molecule from that recognized by OKT3. 20-2b2 was non-mitogenic for human CD4+ T cells, could inhibit the activation of T cells in vitro, and induced T cell anergy in in vivo experiments using humanized mice. Cytokine release in humanized mice induced by the administration of 20-2b2 was significantly less than that induced by OKT-3. Our results indicated that the CD3 molecule is still an attractive, effective, and useful target for the modulation of T cell responses. The establishment of other Abs that recognize CD3, even though the determinant recognized by those Abs may be close to or different from that recognized by OKT-3, may represent a novel approach for the development of safer Ab therapies using anti-CD3 Abs, in addition to the modification of OKT-3 in terms of the induction of cytokine production.
Modulation of the human T cell response by a novel non-mitogenic anti-CD3 antibody.
Specimen part, Disease, Disease stage
View SamplesGIST is considered to invariably arise through gain-of-function KIT or PDGFRA mutation of the interstitial cells of Cajal (ICC). However, the genetic basis of the malignant progression of GIST is poorly understood.
Distinct gene expression-defined classes of gastrointestinal stromal tumor.
Sex, Age
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Intestinal master transcription factor CDX2 controls chromatin access for partner transcription factor binding.
Specimen part
View Samples