Displacement of Bromodomain and Extra-Terminal (BET) proteins from chromatin has promise for cancer and inflammatory disease treatments, but roles of BET proteins in metabolic disease remain unexplored. Small molecule BET inhibitors, such as JQ1, block BET protein binding to acetylated lysines, but lack selectivity within the BET family (Brd2, Brd3, Brd4, Brdt), making it difficult to disentangle contributions of each family member to transcriptional and cellular outcomes. Here, we demonstrate multiple improvements in pancreatic -cells upon BET inhibition with JQ1 or BET-specific siRNAs. JQ1 (50-400 nM) increases insulin secretion from INS-1 cells in a concentration dependent manner. JQ1 increases insulin content in INS-1 cells, accounting for increased secretion, in both rat and human islets. Higher concentrations of JQ1 decrease intracellular triglyceride stores in INS-1 cells, a result of increased fatty acid oxidation. Specific inhibition of both Brd2 and Brd4 enhances insulin transcription, leading to increased insulin content. Inhibition of Brd2 alone increases fatty acid oxidation. Overlapping yet discrete roles for individual BET proteins in metabolic regulation suggest new isoform-selective BET inhibitors may be useful to treat insulin resistant/diabetic patients. Results imply that cancer and diseases of chronic inflammation or disordered metabolism are related through shared chromatin regulatory mechanisms.
BET Bromodomain Proteins Brd2, Brd3 and Brd4 Selectively Regulate Metabolic Pathways in the Pancreatic β-Cell.
Cell line
View SamplesWe generated skeletal muscle-specific knockout mice lacking the transcription factor Yin Yang 1 (YY1) and analyzed expression patterns in the skeletal muscle these mice.
Defective mitochondrial morphology and bioenergetic function in mice lacking the transcription factor Yin Yang 1 in skeletal muscle.
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Antitelomerase therapy provokes ALT and mitochondrial adaptive mechanisms in cancer.
Specimen part, Treatment
View SamplesWe used microarray profiling to document the difference between telomerase+ vs. ALT+ T-cell lymphomas developed on G3 Atm-/-TERT-ER genetic background.
Antitelomerase therapy provokes ALT and mitochondrial adaptive mechanisms in cancer.
Specimen part
View SamplesGene expression was examined in granulosa cells and oocytes in various stage of follicle and in vitro grown oocytes and granulosa cells complexes in sus scrofa.
Gene expression patterns in granulosa cells and oocytes at various stages of follicle development as well as in in vitro grown oocyte-and-granulosa cell complexes.
Specimen part
View SamplesSIRT6 is a member of a highly conserved family of NAD+-dependent deacetylases with various roles in metabolism, stress resistance, and life span. SIRT6- deficient mice develop normally but succumb to a lethal hypoglycemia early in life; however, the mechanism underlying this hypoglycemia remained unclear. Here, we demonstrate that SIRT6 functions as a histone H3K9 deacetylase to control the expres- sion of multiple glycolytic genes. Specifically, SIRT6 appears to function as a corepressor of the transcrip- tion factor Hif1a, a critical regulator of nutrient stress responses. Consistent with this notion, SIRT6-defi- cient cells exhibit increased Hif1a activity and show increased glucose uptake with upregulation of glycolysis and diminished mitochondrial respiration. Our studies uncover a role for the chromatin factor SIRT6 as a master regulator of glucose homeostasis and may provide the basis for novel therapeutic approaches against metabolic diseases, such as diabetes and obesity.
The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells.
Specimen part, Cell line
View SamplesIn undifferentiated human ES cells, 5hr Met deprivation (delta Met) led to decreased proliferation, and prolonged 24hr Met deprivation resulted in G0-G1 phase cell cycle arrest, which then led to apoptosis.
Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells.
Specimen part, Cell line
View SamplesIn undifferentiated human ES cells, 48hr Leucine deprivation (delta Leu) or Lysine deprivation (delta Lys) led to apoptosis.
Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Emergence of a stage-dependent human liver disease signature with directed differentiation of alpha-1 antitrypsin-deficient iPS cells.
Cell line
View Samples