This SuperSeries is composed of the SubSeries listed below.
EWS/ATF1 expression induces sarcomas from neural crest-derived cells in mice.
Specimen part
View SamplesClear cell sarcoma (CCS) is an aggressive soft tissue malignant tumor characterized by a unique t(12; 22) translocation, leading to the expression of a chimeric EWS/ATF1 fusion gene. However, little is known about the mechanisms underlying how EWS/ATF1 is involved in the development of CCSs. In addition, the cells of origin for CCSs remain to be determined. We generated EWS/ATF1-inducible mice, and examined the effects of EWS/ATF1 expression in adult cells. We show that the forced expression of EWS/ATF1 results in the development of EWS/ATF1-dependent sarcomas in mice. The histology of EWS/ATF1-induced sarcomas resembles that of CCSs and EWS/ATF1-induced tumor cells express CCS-markers, such as S100, Sox10, and Mitf. A lineage tracing experiment revealed that such sarcomas are derived from neural crest-lineage cells. Finally, we found that EWS/ATF1 directly induces Fos in an ERK-independent manner, and demonstrated that the increased Fos expression is important for the active cell proliferation in not only EWS/ATF1-induced sarcomas, but also in human CCSs. Our results indicate that FOS, as well as EWS/ATF1 itself, could be a promising therapeutic target for the treatment of EWS/ATF1-related sarcomas.
EWS/ATF1 expression induces sarcomas from neural crest-derived cells in mice.
Specimen part
View SamplesSeveral groups have reported the existence of a form of pluripotency that resembles that of mouse embryonic stem cells (mESCs), i.e., a naïve state, in human pluripotent stem cells; however, the characteristics vary between reports. The nuclear receptor ESRRB is expressed in mESCs and plays a significant role in their self-renewal, but its expression has not been observed in most naïve-like human induced pluripotent stem cells (hiPSCs). In this study, we modified several methods for converting hiPSCs into a naïve state through the transgenic expression of several reprogramming factors. The resulting cells express the components of the core transcriptional network of mESCs, including ESRRB, at high levels, which suggests the existence of naïve-state hiPSCs that are similar to mESCs. We also demonstrate that these cells differentiate more readily into neural cells than do conventional hiPSCs. These features may be beneficial for their use in disease modeling and regenerative medicine. Overall design: RNA-seq of primed and naïve-like hiPSCs in 3 biological replicates respectively.
Naive-like ESRRB<sup>+</sup> iPSCs with the Capacity for Rapid Neural Differentiation.
Specimen part, Cell line, Subject
View SamplesThe mammalian Y chromosome plays a critical role in spermatogenesis. However, the exact functions of each gene in the Y chromosome have not been completely elucidated, partly owing to difficulties in gene targeting analysis for the Y chromosome. Zfy was first proposed to be a sex determination factor, but its function in spermatogenesis has been recently elucidated. Nevertheless, Zfy gene targeting analysis has not been performed thus far. Here, we adopted the highly efficient CRISPR/Cas9 system to generate individual Zfy1 or Zfy2 knockout (KO) mice, and Zfy1 and Zfy2 double knockout (Zfy1/2-DKO) mice. While individual Zfy1 or Zfy2-KO mice did not show any significant phenotypic alterations in fertility, Zfy1/2-DKO mice were infertile and displayed abnormal sperm morphology, fertilization failure, and early embryonic development failure. Mass spectrometric screening, followed by confirmation with western blot analysis, showed that PLCZ1, PLCD4, PRSS21, and HTT protein expression was significantly deceased in spermatozoa from Zfy1/2-DKO mice compared with those from wild type mice. These results are consistent with the phenotypic changes seen in the double mutant mice. Collectively, our strategy and findings revealed that Zfy1 and Zfy2 have redundant functions in spermatogenesis, facilitating a better understanding of fertilization failure and early embryonic development failure.
Complementary Critical Functions of Zfy1 and Zfy2 in Mouse Spermatogenesis and Reproduction.
Age, Specimen part
View SamplesDissemination of cancer stem cells (CSCs) serves as the basis of metastasis. Recently, we demonstrated that circulating prostate cancer (PCa) targets the hematopoietic stem cell (HSCs) niche in marrow during dissemination. Once in the niche, disseminated tumor cells (DTCs) may remain dormant for extended periods. As the major function of the HSC niche is to maintain stem cell functions, we hypothesized that the niche regulates CSC activities of DTCs. We show that DTCs recovered from marrow were significantly enriched for a CSC phenotype. Critically, the conversion of DTCs to CSCs is regulated by niche. The data demonstrate that the niche plays a significant role in maintaining tumor-initiating PCa in marrow and suggests a functional relationship between CSCs and dormancy. Understanding how the marrow niche regulates the conversion of DTCs to CSCs is critical for the development of therapeutics specifically targeting skeletal bone metastasis and dormancy.
The marrow niche controls the cancer stem cell phenotype of disseminated prostate cancer.
Specimen part
View SamplesTET2 is an enzyme for converting methylcytosine (mC) to hydorxymethylcytosine (hmC) and its mutations have been frequently found in myeloid malignancies and T-cell lymphoma in humans. We analyzed Tet2 gene trap mice and found that homozygous mice developed T-cell lymphoma with follicular helper T-cell-like features.
Reduced TET2 function leads to T-cell lymphoma with follicular helper T-cell-like features in mice.
Specimen part
View SamplesTranscriptomes of mouse E12.5 primordial germ cells (PGCs), primordial germ cell-like cells (PGCLCs) isolated from 6-day culture embryoid bodies, and the precursor pluripotent stem cells [embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs)] and epiblast-like cells (EpiLCs)
Erasure of DNA methylation, genomic imprints, and epimutations in a primordial germ-cell model derived from mouse pluripotent stem cells.
Sex, Specimen part
View SamplesKurozu is a traditional Japanese rice vinegar. During fermentation and aging of the Kurozu liquid in an earthenware jar over 1 year, solid residue called Kurozu Moromi is produced. In the present study, we evaluated whether concentrated Kurozu or Kurozu Moromi could ameliorate cognitive dysfunction in the senescence accelerated P8 mouse. Senescence accelerated P8 mice were fed 0.25% (w/w) concentrated Kurozu or 0.5% (w/w) Kurozu Moromi for 4 or 25 weeks. Kurozu suppressed cognitive dysfunction and amyloid accumulation in the brain, while Kurozu Moromi showed a tendency to ameliorate cognitive dysfunction, but the effect was not significant. We hypothesize that concentrated Kurozu has an antioxidant effect, however, the level of lipid peroxidation in the brain did not differ in senescence accelerated P8 mice. DNA microarray analysis indicated that concentrated Kurozu increased HSPA1A mRNA expression, a protein that prevents protein misfolding and aggregation. The increase in HSPA1A expression by Kurozu was confirmed using quantitative real-time PCR and immunoblotting methods. Therefore, the suppression of amyloid accumulation by concentrated Kurozu may be associated with HSPA1A induction. However, concentrated Kurozu could not increase HSPA1A expression in mouse primary neurons, suggesting it may not directly affect neurons.
The Brewed Rice Vinegar Kurozu Increases HSPA1A Expression and Ameliorates Cognitive Dysfunction in Aged P8 Mice.
Sex, Age, Specimen part
View SamplesEmergence of antiestrogen-resistant cells in MCF-7 cells during suppression of estrogen signaling is a widely accepted model of acquired breast cancer resistance to endocrine therapy. To obtain insight into the genomic basis of endocrine therapy resistance, we characterized MCF-7 monoclonal sublines that survived 21-day exposure to tamoxifen (T-series sublines) or fulvestrant (F-series sublines) and sublines unselected by drugs (U-series). All T/F-sublines were resistant to the cytocidal effects of both tamoxifen and fulvestrant. However, their responses to the cytostatic effects of fulvestrant varied greatly, and their remarkably diversified morphology showed no correlation with drug resistance. mRNA expression profiles of the U-sublines differed significantly from those of the T/F-sublines, whose transcriptomal responsiveness to fulvestrant was largely lost. A set of genes strongly expressed in the U-sublines successfully predicted metastasis-free survival of breast cancer patients. Most T/F-sublines shared highly homogeneous genomic DNA aberration patterns that were distinct from those of the U-sublines. Genomic DNA of the U-sublines harbored many aberrations that were not found in the T/F-sublines. These results suggest that the T/F-sublines are derived from a common monoclonal progenitor that lost transcriptomal responsiveness to antiestrogens as a consequence of genetic abnormalities many population doublings ago, not from the antiestrogen-sensitive cells in the same culture during the exposure to antiestrogens. Thus, the apparent acquisition of antiestrogen resistance by MCF-7 cells reflects selection of preexisting drug-resistant subpopulations without involving changes in individual cells. Our results suggest the importance of clonal selection in endocrine therapy resistance of breast cancer.
Antiestrogen-resistant subclones of MCF-7 human breast cancer cells are derived from a common monoclonal drug-resistant progenitor.
Specimen part, Cell line, Treatment
View SamplesHere we report that Nono instead functions as a chromatin regulator cooperating with Erk to regulate mESC pluripotency. We demonstrate that Nono loss leads to robust self-renewing mESCs with enhanced expression of Nanog and Klf4, epigenome and transcriptome re-patterning to a “ground-like state” with global reduction of H3K27me3 and DNA methylation resembling the Erk inhibitor PD03 treated mESCs and 2i (both GSK and Erk kinase inhibitors)-induced “ground state”. Mechanistically, Nono and Erk co-bind at a subset of development-related, bivalent genes. Ablation of Nono compromises Erk activation and RNA polymerase II C-terminal Domain serine 5 phosphorylation, and while inactivation of Erk evicts Nono from chromatin, revealing reciprocal regulation. Furthermore, Nono loss results in a compromised activation of its target bivalent genes upon differentiation and the differentiation itself. These findings reveal an unanticipated role of Nono in collaborating with Erk signaling to regulate the integrity of bivalent domain and mESC pluripotency. Overall design: mRNA-seq of parental and Nono-KO mES cells
Nono, a Bivalent Domain Factor, Regulates Erk Signaling and Mouse Embryonic Stem Cell Pluripotency.
Specimen part, Subject
View Samples