Gene expression heterogeneity in the pluripotent state of mouse embryonic stem cells (mESCs) has been increasingly well-characterized. In contrast, exit from pluripotency and lineage commitment have not been studied systematically at the single-cell level. Here we measured the gene expression dynamics of retinoic acid driven mESC differentiation using an unbiased single-cell transcriptomics approach. We found that the exit from pluripotency marks the start of a lineage bifurcation as well as a transient phase of susceptibility to lineage specifying signals. Our study revealed several transcriptional signatures of this phase, including a sharp increase of gene expression variability and a handover between two classes of transcription factors. In summary, we provide a comprehensive analysis of lineage commitment at the single cell level, a potential stepping stone to improved lineage control through timing of differentiation cues. Overall design: Bulk and single-cell RNA-seq (SCRB-seq and SMART-seq) of mouse embryonic stem cells after different periods of continuous exposure to retinoic acid. Bulk RNA-seq of cell lines derived after retinoic exposure and after differentiation with retinoic acid and MEK inhibitor combined.
Dynamics of lineage commitment revealed by single-cell transcriptomics of differentiating embryonic stem cells.
Cell line, Subject
View Samples10X-based scRNA-seq data human fetal kidneys at 5 different ages Overall design: w9, w11, w13, w16 and w18 human fetal kidneys
Single-cell transcriptomics reveals gene expression dynamics of human fetal kidney development.
Specimen part, Subject
View SamplesIn this study we determine the transcriptional profile by RNAseq of mESC in the absence of Smad1 and Smad5 and in subpopulation of mESC with different levels of BMP-SMAD activation. Overall design: Transcriptome analysis using RNAseq was performed on 3 biological replicates of BRE negative and positive mESC subpopulations, which were collected in pairs at 3 different times. Transcriptome analysis using RNAseq was performed on Smad1/5 floxed (FL) and knockout (KO) mESC. Two different parental cell lines were used. For each parental cell line we analyzed one Smad1/5 FL sample and two Smad1/5 KO samples, resulting in respectively two and four biological replicates for the FL and KO conditions.
BMP-SMAD Signaling Regulates Lineage Priming, but Is Dispensable for Self-Renewal in Mouse Embryonic Stem Cells.
No sample metadata fields
View SamplesCeliac disease is an intestinal inflammatory disorder induced by dietary gluten in genetically susceptible individuals. The mechanisms underlying the massive expansion of interferon gproducing intraepithelial cytotoxic T lymphocytes (CTLs) and the destruction of the epithelial cells lining the small intestine of celiac patients have remained elusive. We report massive oligoclonal expansions of intraepithelial CTLs that exhibit a profound genetic reprogramming of natural killer (NK) functions. These CTLs aberrantly expressed cytolytic NK lineage receptors, such as NKG2C, NKp44, and NKp46, which associate with adaptor molecules bearing immunoreceptor tyrosine-based activation motifs and induce ZAP-70 phosphorylation, cytokine secretion, and proliferation independently of T cell receptor signaling. This NK transformation of CTLs may underlie both the self-perpetuating, gluten-independent tissue damage and the uncontrolled CTL expansion leading to malignant lymphomas in severe forms of celiac disease. Because similar changes were detected in a subset of CTLs from cytomegalovirus-seropositive patients, we suggest that a stepwise transformation of CTLs into NK-like cells may underlie immunopathology in various chronic infectious and inflammatory diseases.
Reprogramming of CTLs into natural killer-like cells in celiac disease.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Human β-defensin 3 affects the activity of pro-inflammatory pathways associated with MyD88 and TRIF.
Specimen part, Treatment, Time
View SamplesWe examine the global effect of hBD3 on transcription in TLR4-stimulated macrophages and for the first time show that hBD3 inhibits the transcription of critical pro-inflammatory genes.
Human β-defensin 3 affects the activity of pro-inflammatory pathways associated with MyD88 and TRIF.
Specimen part, Treatment, Time
View SamplesGene expression profiling for identification of genes regulated by DNA methylation
Genome-wide screening of genes regulated by DNA methylation in colon cancer development.
Specimen part, Cell line
View SamplesActivation of glycolytic genes by HIF-1 is considered critical for metabolic adaptation to hypoxia. We found that HIF-1 also actively suppresses glucose metabolism through the tricarboxylic acid cycle (TCA) by directly trans-activating the gene encoding pyruvate dehydrogenase kinase 1 (PDK1). PDK1 inactivates the TCA cycle enzyme, pyruvate dehydrogenase (PDH), which converts pyruvate to acetyl-CoA. Forced PDK1 expression in hypoxic HIF-1-null cells increases ATP levels, attenuates hypoxic ROS generation and rescues these cells from hypoxia-induced apoptosis. These studies reveal a novel hypoxia-induced metabolic switch that shunts glucose metabolites from the mitochondria to glycolysis to maintain ATP production and to prevent toxic ROS production.
HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia.
No sample metadata fields
View SamplesAbnormal development of the prefrontal cortex (PFC) is associated with a number of neuropsychiatric disorders that have an onset in childhood or adolescence. Although the basic laminar structure of the PFC is established in utero, extensive remodeling continues into adolescence. To map the overall pattern of changes in cortical gene transcripts during post-natal development, we made serial measurements of mRNA levels in mouse PFC using oligonucleotide microarrays. We observed changes in mRNA transcripts consistent with known post-natal morphological and biochemical events. Overall, most transcripts that changed significantly showed a progressive decrease in abundance after birth, with the majority of change between post-natal weeks 2 and 4. Genes with cell proliferative, cytoskeletal, extracellular matrix, plasma membrane lipid / transport, protein folding, and regulatory functions had decreases in mRNA levels. Quantitative PCR verified the microarray results for six selected genes: DNA methyltransferase 3A (Dnmt3a), procollagen, type III, alpha 1 (Col3a1), solute carrier family 16 (monocarboxylic acid transporters), member 1 (Slc16a1), MARCKS-like 1 (Marcksl1), nidogen 1 (Nid1) and 3-hydroxybutyrate dehydrogenase (heart, mitochondrial) (Bdh).
Microarray analysis of the developing cortex.
No sample metadata fields
View SamplesWe demonstrated that, four weeks after the pulmonary artery banding (PAB) operation, rats could be divided into two groups: an F+ group in which the fibrotic area occupied more than 6.5% of the whole area of the heart tissues, and an F- group in which the fibrotic area occupied less than 6.5% of this area.
Fibrosis growth factor 23 is a promoting factor for cardiac fibrosis in the presence of transforming growth factor-β1.
Sex, Specimen part
View Samples