RORt+ innate lymphoid cells (ILC) are crucial players of innate immune responses and represent a major source of IL-22, which has an important role in mucosal homeostasis. The signals required by RORt+ ILC to express IL-22 and other cytokines, including TNF, have only partially been elucidated. Here we show that RORt+ ILC can directly sense the environment by the engagement of the activating receptor NKp44. NKp44 triggering in RORt+ ILC selectively activates a coordinated pro-inflammatory program, including TNF, while cytokine stimulation induces preferentially IL-22 expression. However, combined engagement of NKp44 and cytokine receptors results in a strong synergistic effect. These data support the concept that NKp44+ RORt+ ILC can be activated without cytokines and are able to switch between IL-22 or TNF production, depending on the triggering stimulus.
RORγt⁺ innate lymphoid cells acquire a proinflammatory program upon engagement of the activating receptor NKp44.
Specimen part, Treatment
View SamplesProfiling CD34+ BCR-ABL+ cells of CML patients in chronic phase or blast crisis to identify differentially expressed stage-specific genes.
Gene expression profiling of CD34+ cells identifies a molecular signature of chronic myeloid leukemia blast crisis.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesThe ubiquitin proteasome system (UPS) is known to possess important regulatory functions in the immune response. To gain a better and first comprehensive insight into the mechanisms underlying the conversion of immature to mature DC in terms of the expression of UPS related genes, we undertook a comparative gene expression profiling during DC maturation in response to four different prototypic maturation stimuli.
Maturation of human dendritic cells is accompanied by functional remodelling of the ubiquitin-proteasome system.
No sample metadata fields
View SamplesThe cellular origin of chronic lymphocytic leukemia (CLL) is debated. Transcriptome analysis of CLL and normal peripheral blood and splenic B cell subsets displayed highest similarity of CLL to mature CD5+ B cells. We identified a distinct CD5+CD27+ post-germinal center B cell subset, and revealed that immunoglobulin V gene mutated CLL are more similar to mutated CD5+ B cells, whereas unmutated CLL are more related to unmutated CD5+ B cells. Stereotyped immunoglobulin V gene rearrangements were significantly enriched among CD5+ B cells, providing further genetic evidence for a derivation of CLL from CD5+ B cells. Moreover, we identified deregulated expression patterns providing novel insights into the pathophysiology of CLL, including downregulation of EBF1 and KLF family members.
Cellular origin and pathophysiology of chronic lymphocytic leukemia.
Specimen part
View SamplesAim of this project was to determine the transcriptional response of the isolate PA30 to tap water and waste water.
Whole genome and transcriptome analyses of environmental antibiotic sensitive and multi-resistant Pseudomonas aeruginosa isolates exposed to waste water and tap water.
Specimen part
View SamplesAim of this project was to determine the transcriptional response of the isolate PA49 to tap water and waste water.
Whole genome and transcriptome analyses of environmental antibiotic sensitive and multi-resistant Pseudomonas aeruginosa isolates exposed to waste water and tap water.
Specimen part
View SamplesAnalysis of knockdown of SDHD with or without knockdown of CDKN1C or SLC22A18 at gene expression level.
Parent-of-origin tumourigenesis is mediated by an essential imprinted modifier in SDHD-linked paragangliomas: SLC22A18 and CDKN1C are candidate tumour modifiers.
Specimen part, Cell line
View SamplesGenome wide gene expression profile of the lrx1 root hair mutant and the suppressor mutations lrx1 rol1-1 and lrx1 rol1-2.
The Arabidopsis root hair cell wall formation mutant lrx1 is suppressed by mutations in the RHM1 gene encoding a UDP-L-rhamnose synthase.
Age, Specimen part
View SamplesLower urinary tract malformations are among the most common congenital anomalies in humans. The urethral plate epithelium is an endodermal signaling region that plays an essential role in external genital development; however, little is known about the molecular identity of this cell population or the genes that regulate its activity. We aim to characterize differences in gene expression between the urethral plate epithelium and surrounding mouse genital tubercles during a crucial developmental period.
Molecular Characterization of the Genital Organizer: Gene Expression Profile of the Mouse Urethral Plate Epithelium.
Sex, Specimen part
View SamplesThe Drosophila piRNA pathway provides an RNA-based immune system that defends the germline genome against selfish genetic elements. Two inter-related branches of the piRNA system exist: somatic cells that support oogenesis only employ Piwi, whereas germ cells utilize a more elaborated pathway centered on the three gonad-specific Argonaute proteins Piwi, Aubergine, and Argonaute3. While several key factors of each branch have been identified, our current knowledge is insufficient to explain the complex workings of the piRNA machinery. Here, we report a reverse genetic screen spanning the ovarian transcriptome in an attempt to uncover the full repertoire of genes required for piRNA-mediated transposon silencing in the female germline. Our screen reveals new key factors of piRNA-mediated transposon silencing, including the novel piRNA biogenesis factors, CG2183 (GASZ) and Deadlock. Last, our data uncovers a previously unanticipated set of factors preferentially required for repression of different transposons types. Overall design: Examination of total RNA levels from nos-GAL4 or tj-GAL4 driven UAS-dsRNA knockdowns of control genes and piRNA pathway components in ovaries of Drosophila melanogaster by deep sequencing (using Illumina HiSeq2000).
Regulation of Ribosome Biogenesis and Protein Synthesis Controls Germline Stem Cell Differentiation.
Specimen part, Subject
View Samples