BPH/5 mice are an inbred strain with “borderline hypertension” that spontaneously develops both maternal and fetal hallmarks of preeclampsia. RNA-Seq analysis of BPH/5 uterine implantation sites at embryonic day 7.5, the peak of decidualization, identifies differential expression of inflammatory response genes, including members of the complement family, compared to C57 controls. Overall design: RNA-Seq was performed on RNA isolated from E7.5 BPH/5 and C57 implantation sites (n=4).
Angiogenic factor imbalance precedes complement deposition in placentae of the BPH/5 model of preeclampsia.
Cell line, Subject
View SamplesVertebrates typically harbor a rich gastrointestinal microbiota, which has co-evolved with the host over millennia and is essential for several of its physiological functions, in particular maturation of the immune system. Recent studies have highlighted the importance of a single bacterial species, segmented filamentous bacteria (SFB), in inducing a robust T helper (Th)17 population in the small intestinal lamina propria (SI-LP) of the mouse gut. Consequently, SFB can promote IL-17-dependent immune and autoimmune responses, gut-associated as well as systemic, including inflammatory arthritis and experimental autoimmune encephalomyelitis. Here, we exploit the incomplete penetrance of SFB colonization of NOD mice in our animal facility to explore its impact on the incidence and course of type-1 diabetes in this prototypical, spontaneous model. There was a strong co-segregation of SFB-positivity and diabetes protection in females, but not in males, which remained relatively disease-free regardless of the SFB status. In contrast, insulitis did not depend on SFB colonization. SFB-positive, but not SFB-negative, females had a substantial population of Th17 cells in the SI-LP, which was the only significant, repeatable difference in the examined T cell compartments of the gut, pancreas or systemic lymphoid tissues. Th17 signature transcripts dominated the very limited SFB-induced molecular changes detected in SI-LP CD4+ T cells. Thus, a single bacterium, and the gut immune system alterations associated with it, can either promote or protect from autoimmunity in predisposed mouse models, likely reflecting their variable dependence on different Th subsets.
Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice.
Age, Specimen part
View SamplesNotch receptors direct the differentiation of T helper (Th) cell subsets, but their influence on regulatory T (TR) cell responses is obscure. Interruption of Notch signaling in TR cells resulted in a super-regulatory phenotype, with suppression of TR cell Th1 programming and apoptosis as well as Th1 cell responses in systemic inflammation. In contrast, gain of function Notch1 signaling in TR cells resulted in lymphoproliferation, dysregulated Th1 responses and autoimmunity. To determine mechanisms by which Notch signaling may alter TR cell function, we compared the transcriptional profiles of splenic TR cells of Foxp3EGFPCre mice with those of Foxp3EGFPCreR26N1c/N1c (gain of function Notch signaling), Foxp3EGFPCreRBPJ/ (loss of function canonical Notch signaling), and Foxp3EGFPCreR26N1c/N1cRBPJ/ mice (gain of function/canonical loss of function Notch signaling).
Control of peripheral tolerance by regulatory T cell-intrinsic Notch signaling.
Sex, Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Identification of Drugs that Regulate Dermal Stem Cells and Enhance Skin Repair.
Treatment
View SamplesHere, we asked whether we could identify pharmacological agents that enhance endogenous stem cell function to promote skin repair, focusing on SKPs (skin-derived precursors) a dermal precursor cell population. Libraries of compounds already used in humans were screened for their ability to enhance the self-renewal of human and rodent SKPs. We identified and validated 5 such compounds, and showed that two of them, alprostadil and trimebutine maleate, enhanced the repair of full thickness skin wounds in middle-aged mice. Moreover, SKPs isolated from drug-treated skin displayed long-term increases in self-renewal when cultured in basal growth medium without drugs. Both alprostadil and trimebutine maleate likely mediated increases in SKPs self-renewal by moderate hyperactivation of the MEK-ERK pathway. These findings identify candidates for potential clinical use in human skin repair, and provide support for the idea that pharmacological activation of endogenous tissue precursors represents a viable therapeutic strategy.
Identification of Drugs that Regulate Dermal Stem Cells and Enhance Skin Repair.
Treatment
View SamplesHere, we asked whether we could identify pharmacological agents that enhance endogenous stem cell function to promote skin repair, focusing on SKPs (skin-derived precursors) a dermal precursor cell population. Libraries of compounds already used in humans were screened for their ability to enhance the self-renewal of human and rodent SKPs. We identified and validated 5 such compounds, and showed that two of them, alprostadil and trimebutine maleate, enhanced the repair of full thickness skin wounds in middle-aged mice. Moreover, SKPs isolated from drug-treated skin displayed long-term increases in self-renewal when cultured in basal growth medium without drugs. Both alprostadil and trimebutine maleate likely mediated increases in SKPs self-renewal by moderate hyperactivation of the MEK-ERK pathway. These findings identify candidates for potential clinical use in human skin repair, and provide support for the idea that pharmacological activation of endogenous tissue precursors represents a viable therapeutic strategy.
Identification of Drugs that Regulate Dermal Stem Cells and Enhance Skin Repair.
Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A special population of regulatory T cells potentiates muscle repair.
Sex, Age, Specimen part, Treatment, Time
View SamplesA phenotypically and functionally distinct population of CD4+ Foxp3+ T cells (Tregs) rapidly accumulates in acutely injured skeletal muscle of mice, just as invading myeloid-lineage cells switch from a pro-inflammatory to a pro-regenerative state. Analysis of gene expression of Tregs and CD4+Foxp3- T cells (Tconvs) from injured muscle and spleen revealed that the transcriptome of muscle Treg cells is distinct from that of splenic Tregs. A set of genes is uniquely expressed by muscle Tregs, while another set is over-expressed by the two muscle populations vis--vis their two spleen counterparts.
A special population of regulatory T cells potentiates muscle repair.
Sex, Age, Specimen part, Treatment, Time
View SamplesA comparative analysis of gene expression of injured skeletal muscle from wild-type (Foxp3-DTR-) and Treg-depleted (Foxp3-DTR+) mice showed that Treg cells are critical for effective repair and regeneration of acute injury of skeletal muscle.
A special population of regulatory T cells potentiates muscle repair.
Sex, Age, Specimen part, Treatment, Time
View SamplesGlobal gene expression analysis of injured skeletal muscle showed that amphiregulin (Areg), a growth factor over-expressed by muscle Treg cells, enhances muscle regeneration both in the presence and in the absence of Tregs.
A special population of regulatory T cells potentiates muscle repair.
Age, Specimen part, Treatment, Time
View Samples