This SuperSeries is composed of the SubSeries listed below.
RNA-stabilized whole blood samples but not peripheral blood mononuclear cells can be stored for prolonged time periods prior to transcriptome analysis.
Sex, Age, Specimen part, Time
View SamplesAnalysis of effect of long-term cryopreservation on peripheral blood mononuclear cells at gene expression level. The hypothesis tested in the present study was that long-term cryopreservation has an influence on the transcriptome profile of peripheral blood mononuclear cells. Results indicated remarkable changes in expression patterns upon cryopreservation of PBMCs, with decreasing signal intensities over time.
RNA-stabilized whole blood samples but not peripheral blood mononuclear cells can be stored for prolonged time periods prior to transcriptome analysis.
Sex, Age, Specimen part, Time
View SamplesAnalysis of cryopreservation effects on peripheral blood mononuclear cells at gene expression level. The hypothesis tested in the present study was that cryopreservation has an influence on the transcriptome profile of peripheral blood mononuclear cells. Results indicated remarkable changes in expression patterns upon cryopreservation of PBMCs, with a strong loss of signal intensities to background levels for several transcripts.
RNA-stabilized whole blood samples but not peripheral blood mononuclear cells can be stored for prolonged time periods prior to transcriptome analysis.
Age, Specimen part
View SamplesAnalysis of long-term freezing on the stability of transcriptome profiles in PAXgene stabilized whole blood samples. In the present study it was tested if long-term freezing of PAXgene RNA tubes (up to one year) has an influence on the transcriptome profile of peripheral whole blood samples. Results indicated that gene expression profiles of whole blood samples stabilized with PAXgene RNA tubes remain stable for at least 1 year.
RNA-stabilized whole blood samples but not peripheral blood mononuclear cells can be stored for prolonged time periods prior to transcriptome analysis.
Sex, Age, Specimen part, Time
View SamplesHuman pluripotent stem cells (hPSC) exposed to BMP4 (B) and inhibitors of ACTIVIN signaling (A83-01; A) and FGF2 (PD173074; P) in absence of FGF2 (BAP conditions) differentiate into colonies primarily comprised of trophoblast. In an attempt to isolate trophoblast stem cells, colonies of hESC were exposed to BAP for 24 h at which time they had begun to transition into a CDX2-positive state. Cultures were then dissociated into single cells by trypsin and grown on a gelatin substratum. Under these conditions, organized CDX2+/KRT7- colonies began to emerge within a few days. The self-renewing cell lines were not TBSC, but met standard criteria for pluripotency. They were named H1BP cells. They differed from the progenitor hPSC in morphology, ability to be clonally propagated from single cells onto gelatin, requirements for FGF2, and transcriptome profile.
Heightened potency of human pluripotent stem cell lines created by transient BMP4 exposure.
Specimen part, Time
View SamplesIn pregnancies involving preeclampsia (PE), there is evidence that the fetal-placental unit is under oxidative stress. Here we examined primary cell lines generated from umbilical cords (UC) delivered by mothers who had either a normal pregnancy or experienced early onset PE to determine whether the two had distinguishable phenotypes. While all UC provided outgrowths when established in 4 % O2, success was less assured for PE cords under ambient (20 % O2) conditions (P < 0.05). Moreover, proliferation rates of established PE lines, although similar to controls in 4 % O2, were significantly lower in 20 % O2. PE lines grown in 4 % O2 were also more susceptible to the pro-oxidant diethylmaleate than control lines, and unlike controls, were not protected by glutathione.
Abnormal oxidative stress responses in fibroblasts from preeclampsia infants.
Specimen part, Disease
View SamplesIn this study, we use pre-malignant cells from different Cebpa mutant acute myeloid leukemia (AML) models. We have used conditional KO models (CreLoxP) and isolated hematopoietic cells shortly after induction of recombination, in order to look at pre-leukemic cells, which have acquired the first hit, but not yet undergone full malignant transformation.
Lack of the p42 form of C/EBPα leads to spontaneous immortalization and lineage infidelity of committed myeloid progenitors.
Sex, Specimen part
View SamplesIn this study, we use a conditional mouse model for Cebpa to investigate the significance of C/EBP in HSCs. The frequency of HSCs is unaltered following deletion of C/EBP, however, upon serial transplantations of either full BM or purified HSCs, the stem cells and stem cell activity is lost. This is not due to increased proliferation, but rather caused by a shift from quiescence to apoptosis with a resultant exhaustion of the stem cell pool. We identify direct C/EBP target genes by combining genome-wide C/EBP ChIP-seq analysis in stem and progenitor cells with gene expression data from HSC with and without C/EBP. Furthermore, we explore the impact of C/EBP on active and repressive histone modifications by doing functional genome-wide ChIP-seq analysis of H3K4Me3 and H3K27Me3 in stem and progenitor cells with and without C/EBP.
C/EBPα is required for long-term self-renewal and lineage priming of hematopoietic stem cells and for the maintenance of epigenetic configurations in multipotent progenitors.
Sex, Specimen part
View SamplesTranscriptional profile of monocytes in the colon in response to C. rodentium infection Overall design: Eight samples have been analyzed. All are from Cd11b+Ly6C+ inflammatory monocytes sorted from colonic tissue 9 days after C. rodentium infection from Atg16L1HM(4) and WT(4) mice.
Autophagy proteins suppress protective type I interferon signalling in response to the murine gut microbiota.
Age, Specimen part, Subject
View SamplesCancer sequencing studies have implicated regulators of pre-mRNA splicing as important disease determinants in Acute Myeloid Leukemia (AML), but the underlying mechanisms have remained elusive. We hypothesized that “non-mutated” splicing regulators may also play a role in AML biology and therefore conducted an in vivo shRNA screen in a mouse model of CEBPA mutant AML. This led to the identification of the splicing regulator RBM25 as a novel tumor suppressor, and down-regulation of RBM25 increased proliferation and decreased apoptosis in human leukemic cell lines. Mechanistically, we could show that RBM25 controlled the splicing of key genes, including those encoding the apoptotic regulator BCL-x and the MYC inhibitor BIN1. Specifically, we demonstrated that RBM25 acts as a regulator of MYC activity and sensitizes cells to increased MYC levels. This mechanism also appears to be operative in human AML patients where RBM25 levels correlative inversely with MYC activity and clinical outcome. Overall design: Examined transcriptome from U937 cells in biological triplicates.
The splicing factor RBM25 controls MYC activity in acute myeloid leukemia.
Specimen part, Cell line, Subject
View Samples