This SuperSeries is composed of the SubSeries listed below.
RNA-stabilized whole blood samples but not peripheral blood mononuclear cells can be stored for prolonged time periods prior to transcriptome analysis.
Sex, Age, Specimen part, Time
View SamplesAnalysis of effect of long-term cryopreservation on peripheral blood mononuclear cells at gene expression level. The hypothesis tested in the present study was that long-term cryopreservation has an influence on the transcriptome profile of peripheral blood mononuclear cells. Results indicated remarkable changes in expression patterns upon cryopreservation of PBMCs, with decreasing signal intensities over time.
RNA-stabilized whole blood samples but not peripheral blood mononuclear cells can be stored for prolonged time periods prior to transcriptome analysis.
Sex, Age, Specimen part, Time
View SamplesAnalysis of cryopreservation effects on peripheral blood mononuclear cells at gene expression level. The hypothesis tested in the present study was that cryopreservation has an influence on the transcriptome profile of peripheral blood mononuclear cells. Results indicated remarkable changes in expression patterns upon cryopreservation of PBMCs, with a strong loss of signal intensities to background levels for several transcripts.
RNA-stabilized whole blood samples but not peripheral blood mononuclear cells can be stored for prolonged time periods prior to transcriptome analysis.
Age, Specimen part
View SamplesAnalysis of long-term freezing on the stability of transcriptome profiles in PAXgene stabilized whole blood samples. In the present study it was tested if long-term freezing of PAXgene RNA tubes (up to one year) has an influence on the transcriptome profile of peripheral whole blood samples. Results indicated that gene expression profiles of whole blood samples stabilized with PAXgene RNA tubes remain stable for at least 1 year.
RNA-stabilized whole blood samples but not peripheral blood mononuclear cells can be stored for prolonged time periods prior to transcriptome analysis.
Sex, Age, Specimen part, Time
View SamplesCilia are ubiquitous cell surface projections that modulate various sensory- and motility based processes and are implicated in a growing number of multi-organ genetic disorders termed ciliopathies. As new components required for cilium biogenesis and function remain unidentified, we sought to further define and validate the transcriptional targets of the ciliogenic C. elegans RFX transcription factor DAF-19. To this end, transcriptional profiling of daf-19 mutants (which do not form cilia) and wild-type animals was performed using selectively staged embryos where ciliogenesis occurs in most ciliated sensory neurons
Transcriptional profiling of C. elegans DAF-19 uncovers a ciliary base-associated protein and a CDK/CCRK/LF2p-related kinase required for intraflagellar transport.
Specimen part
View SamplesHuman pluripotent stem cells (hPSC) exposed to BMP4 (B) and inhibitors of ACTIVIN signaling (A83-01; A) and FGF2 (PD173074; P) in absence of FGF2 (BAP conditions) differentiate into colonies primarily comprised of trophoblast. In an attempt to isolate trophoblast stem cells, colonies of hESC were exposed to BAP for 24 h at which time they had begun to transition into a CDX2-positive state. Cultures were then dissociated into single cells by trypsin and grown on a gelatin substratum. Under these conditions, organized CDX2+/KRT7- colonies began to emerge within a few days. The self-renewing cell lines were not TBSC, but met standard criteria for pluripotency. They were named H1BP cells. They differed from the progenitor hPSC in morphology, ability to be clonally propagated from single cells onto gelatin, requirements for FGF2, and transcriptome profile.
Heightened potency of human pluripotent stem cell lines created by transient BMP4 exposure.
Specimen part, Time
View SamplesBiofilms are surface-adhered bacterial communities encased in an extracellular matrix composed of polysaccharides, proteins, and extracelluar (e)DNA, with eDNA being required for the formation and integrity of biofilms. Here we demonstrate that the spatial and temporal release of eDNA is regulated by BfmR, a regulator essential for Pseudomonas aeruginosa biofilm development. The expression of bfmR coincided with localized cell death and DNA release, with high eDNA concentrations localized to the outer part of microcolonies in the form of a ring and as a cap on small clusters. Additionally, eDNA release and cell lysis increased significantly following bfmR inactivation. Genome-wide transcriptional profiling indicated that bfmR was required for repression of genes associated with bacteriophage assembly and bacteriophage-mediated lysis. In order to determine which of these genes were directly regulated by BfmR, we utilized chromatin immunoprecipitation (ChIP) analysis to identify the promoter of PA0691, termed here phdA, encoding a previously undescribed homologue of the prevent-host-death (Phd) family of proteins. Lack of phdA expression coincided with impaired biofilm development, increased cell death and bacteriophage release, a phenotype comparable to bfmR. Expression of phdA in bfmR biofilms restored eDNA release, cell lysis, release of bacteriophages, and biofilm formation to wild type levels. Moreover, overexpression of phdA rendered P. aeruginosa resistant to lysis mediated by superinfective bacteriophage Pf4 which was only detected in biofilms. The expression of bfmR was stimulated by conditions resulting in membrane perturbation and cell lysis. Thus, we propose that BfmR regulates biofilm development by controlling bacteriophage-mediated lysis and thus, cell death and eDNA release, via PhdA.
The novel Pseudomonas aeruginosa two-component regulator BfmR controls bacteriophage-mediated lysis and DNA release during biofilm development through PhdA.
No sample metadata fields
View SamplesA hallmark of the biofilm architecture is the presence of microcolonies. However, little is known about the underlying mechanisms governing microcolony formation. In the human pathogen Pseudomonas aeruginosa, microcolony formation is dependent on the two-component regulator MifR, with mifR mutant biofilms exhibiting an overall thin structure lacking microcolonies, and overexpression of mifR resulting in hyper-microcolony formation. Here, we made use of the distinct MifR-dependent phenotypes to elucidate mechanisms associated with microcolony formation. Using global transcriptomic and proteomic approaches, we demonstrate that cells located within microcolonies experience stressful, oxygen limited, and energy starving conditions, as indicated by the activation of stress response mechanisms and anaerobic and fermentative processes, in particular pyruvate fermentation. Inactivation of genes involved in pyruvate utilization including uspK, acnA and ldhA abrogated microcolony formation in a manner similar to mifR inactivation. Moreover, depletion of pyruvate from the growth medium impaired biofilm and microcolony formation, while addition of pyruvate significantly increased microcolony formation. Addition of pyruvate partly restored microcolony formation in mifR biofilms. Moreover, addition of pyruvate to or expression of mifR in lactate dehydrogenase (ldhA) mutant biofilms did not restore microcolony formation. Consistent with the finding of denitrification genes not demonstrating distinct expression patterns in biofilms forming or lacking microcolonies, addition of nitrate did not alter microcolony formation. Our findings indicate the fermentative utilization of pyruvate to be a microcolony-specific adaptation to the oxygen limitation and energy starvation of the P. aeruginosa biofilm environment.
Microcolony formation by the opportunistic pathogen Pseudomonas aeruginosa requires pyruvate and pyruvate fermentation.
No sample metadata fields
View SamplesIn pregnancies involving preeclampsia (PE), there is evidence that the fetal-placental unit is under oxidative stress. Here we examined primary cell lines generated from umbilical cords (UC) delivered by mothers who had either a normal pregnancy or experienced early onset PE to determine whether the two had distinguishable phenotypes. While all UC provided outgrowths when established in 4 % O2, success was less assured for PE cords under ambient (20 % O2) conditions (P < 0.05). Moreover, proliferation rates of established PE lines, although similar to controls in 4 % O2, were significantly lower in 20 % O2. PE lines grown in 4 % O2 were also more susceptible to the pro-oxidant diethylmaleate than control lines, and unlike controls, were not protected by glutathione.
Abnormal oxidative stress responses in fibroblasts from preeclampsia infants.
Specimen part, Disease
View SamplesJoMa1 cells are pluripotent precursor cells, derived from the neural crest of mice transgenic for tamoxifen-inducible c-Myc. Following transfection with a cDNA encoding for MYCN, cells become immortlized even in the absence of tamoxifen.
MYCN and ALKF1174L are sufficient to drive neuroblastoma development from neural crest progenitor cells.
Specimen part, Cell line
View Samples