Abhd15 is mainly expressed in white adipose tissues and highly upregulated upon adipogenesis. Abhd15 expression is correlated with insulin resistance in obese humans, however its physiological function remains unknown. We used the microarray technology to gain insight into ABHD15s physiological function by identifying dysregulated genes in eWAT from Abhd15-ko mice in comparison to WT mice.
Loss of ABHD15 Impairs the Anti-lipolytic Action of Insulin by Altering PDE3B Stability and Contributes to Insulin Resistance.
Sex, Specimen part
View SamplesWe studied whether the accumulation of lipids in the fasted kidney are derived from lipoproteins or (non-esterified fatty acids) NEFAs. With overnight fasting, kidneys accumulated triglyceride, but had reduced levels of ceramide and glycosphingolipid species. Fasting led to a nearly 5-fold increase in kidney uptake of plasma [14C]oleic acid. Increasing circulating NEFAs using a ß adrenergic receptor agonist caused a 15-fold greater accumulation of lipid in the kidney, while mice with reduced NEFAs due to adipose tissue deficiency of adipose triglyceride lipase had reduced triglycerides. Cluster of differentiation (Cd)36 mRNA increased 2-fold, and angiopoietin-like 4 (Angptl4), an LPL inhibitor, increased 10-fold. Fasting-induced kidney lipid accumulation was not affected by inhibition of LPL with poloxamer 407 or by use of mice with induced genetic LPL deletion. Despite the increase in CD36 expression with fasting, genetic loss of CD36 did not alter fatty acid uptake or triglyceride accumulation. Our data demonstrate that fasting-induced triglyceride accumulation in the kidney correlates with the plasma concentrations of NEFAs, but is not due to uptake of lipoprotein lipids and does not involve the fatty acid transporter, CD36. Overall design: Mice (n=4-5/group) were either fasted for 16 hours or fed ad libitum. Kidneys were removed and snap frozen. RNA was extracted for sequencing.
Kidney triglyceride accumulation in the fasted mouse is dependent upon serum free fatty acids.
Sex, Cell line, Treatment, Subject
View SamplesType II testicular germ cell cancers (GCC) are the most frequently diagnosed tumors in young men (20 - 40 years) and are classified as seminoma or non-seminoma. GCCs are commonly treated by orchiectomy and chemo- or radiotherapy. However, a subset of metastatic non-seminomas display only incomplete remission or relapse and require novel treatment options. Recent studies have shown effective application of the small-molecule inhibitor JQ1 in tumor therapy, which interferes with the function of bromodomain and extra-terminal (BET)-proteins. Here, we demonstrate that upon JQ1 doses 250 nM GCC cell lines and Sertoli cells display compromised survival and induction of cell cycle arrest. JQ1 treated GCC cell lines display upregulation of genes indicative for DNA damage and a cellular stress response. Additionally, downregulation of pluripotency factors and induction of mesodermal differentiation was detected. GCCs xenografted in vivo showed a reduction in tumor size, proliferation and angiogenesis when subjected to JQ1 treatment. The combination of JQ1 and the histone deacetylase inhibitor romidepsin further enhanced the apoptotic effect in vitro and in vivo. Thus, we propose that JQ1 alone, or in combination with romidepsin may serve as a novel therapeutic option for GCCs.
The bromodomain inhibitor JQ1 triggers growth arrest and apoptosis in testicular germ cell tumours in vitro and in vivo.
Specimen part, Cell line, Time
View SamplesMaintenance and maturation of primordial germ cells is controlled by complex genetic and epigenetic cascades, and disturbances in this network lead to either infertility or malignant aberration. Transcription factor Tcfap2c / TFAP2C has been described to be essential for primordial germ cell maintenance and to be upregulated in several human germ cell cancers. Using global gene expression profiling, we identified genes deregulated upon loss of Tcfap2c in primordial germ cell-like cells. We show that loss of Tcfap2c affects many aspects of the genetic network regulating germ cell biology, such as downregulation maturation markers and induction of markers indicative of somatic differentiation, cell cycle, epigenetic remodeling, and pluripotency associated genes. Chromatin-immunoprecipitation analyses demonstrated binding of Tcfap2c to regulatory regions of deregulated genes (Sfrp1, Dmrt1, Nanos3, c-Kit, Cdk6, Cdkn1a, Fgf4, Klf4, Dnmt3b and Dnmt3l) suggesting that these genes are direct transcriptional targets of Tcfap2c in primordial germ cells. Since Tcfap2c deficient primordial germ cell like cells display cancer related deregulations in epigenetic remodeling, cell cycle and pluripotency control, the Tcfap2c-knockout allele was bred onto 129S2/Sv genetic background. There, mice heterozygous for Tcfap2c develop germ cell cancer with high incidence. Precursor lesions can be observed as early as E16.5 in developing testes displaying persisting expression of pluripotency markers. We further demonstrate, that mice with a heterozygous deletion of the Tcfap2c target gene Nanos3 are also prone to develop teratoma. These data highlight Tcfap2c as a critical and dose-sensitive regulator of germ cell fate.
Transcription factor TFAP2C regulates major programs required for murine fetal germ cell maintenance and haploinsufficiency predisposes to teratomas in male mice.
Specimen part
View SamplesTranscriptomes of differentiated cells of the conditionally immortalized mouse podocyte cell line SVI (Schiwek et al., Kidney Int. 66: 91-101, 2004) were determined as described in Warsow et al. (Kidney Int. 84: 104-115, 2013) after application of mechanical stress (Endlich et al., J. Am. Soc. Nephrol. 12: 413-422, 2001) as compared to control conditions.
Mechanical stress enhances CD9 expression in cultured podocytes.
Specimen part, Cell line
View SamplesJoMa1 cells are pluripotent precursor cells, derived from the neural crest of mice transgenic for tamoxifen-inducible c-Myc. Following transfection with a cDNA encoding for MYCN, cells become immortlized even in the absence of tamoxifen.
MYCN and ALKF1174L are sufficient to drive neuroblastoma development from neural crest progenitor cells.
Specimen part, Cell line
View SamplesAnalysis of TH17 cells redirected with chimeric antigen receptors (CAR) expressing various signaling domains (including CD28, 4-1BB and ICOS) after surrogate antigen stimulation.
ICOS-based chimeric antigen receptors program bipolar TH17/TH1 cells.
Specimen part, Time
View SamplesThe protease activity of the paracaspase MALT1 plays an important role in antigen receptor-mediated lymphocyte activation by controlling the activity of the transcription factor NF-kB and is thus essential for the expression of inflammatory target genes.
MALT1 Protease Activity Controls the Expression of Inflammatory Genes in Keratinocytes upon Zymosan Stimulation.
Treatment
View SamplesWe analyzed gene expression profiles of IL-18 generated murine NK cells in comparison to unstimulated, freshly isolated splenic NK cells.
Immunoregulatory natural killer cells suppress autoimmunity by down-regulating antigen-specific CD8+ T cells in mice.
Specimen part, Treatment
View SamplesMurine healthy tissue samples, DCIS and invasive mammary tumors were analyzed in order to identify marker genes which show enhanced expresssion in DCIS and invasive ductal carcinomas.
Identification of early molecular markers for breast cancer.
Specimen part
View Samples