Common ALL (cALL) is the most frequent entity of childhood ALL and carries an early pre-B cell phenotype. Expression patterns of 25 pediatric cALL samples were analyzed by use of high-density DNA microarrays HG-U133A.
MondoA is highly overexpressed in acute lymphoblastic leukemia cells and modulates their metabolism, differentiation and survival.
Specimen part
View SamplesAcute lymphoblastic leukemia (ALL) is the most common childhood cancer. To identify novel candidates for targeted treatment of childhood ALL, we performed a comprehensive transcriptome analysis yielding a set of genes specifically overexpressed in ALL. Among them we identified MondoA - a transcription factor regulating glycolysis in response to glucose availability. Here, we confirm that MondoA is highly overexpressed ALL, whereas the MondoA paralog, MondoB, is not expressed. Expression studies revealed that MondoA is not regulated by glucose availability in leukemia cells, but by the presence of lactate. An in silico MondoA promoter analysis identified two methylation-prone CpG-islands and four conserved binding sites for runt-related transcription factor 1 (RUNX1). In fact, MondoA and RUNX1 are significantly coexpressed in leukemia and experimental blockage of DNA methylation leads to a further induction of MondoA. In addition, using microarray profiling, gene-set enrichment analysis and RNA interference we provide for the first time evidence that MondoA expression not only increases glucose catabolism, but also maintains a more immature ALL phenotype, which is associated with enhanced survival and clonogenicity of leukemia cells. These data hint to an important contribution of MondoA to leukemia aggressiveness validating MondoA as an attractive candidate for targeted treatment of ALL.
MondoA is highly overexpressed in acute lymphoblastic leukemia cells and modulates their metabolism, differentiation and survival.
Specimen part, Cell line
View SamplesObjective
A subset of metastatic pancreatic ductal adenocarcinomas depends quantitatively on oncogenic Kras/Mek/Erk-induced hyperactive mTOR signalling.
No sample metadata fields
View SamplesGrowth factor independence genes (Gfi1 and Gfi1b) repress recombination activating genes (Rag) transcription in developing B lymphocytes. Because all blood lineages originate from hematopoietic stem cells (HSCs) and different lineage progenitors have been shown to share transcription factor networks prior to cell fate commitment, we hypothesized that GFI family proteins may also play a role in repressing Rag transcription or a global lymphoid transcriptional program in other blood lineages. We tested the level of Rag transcription in various blood cells when Gfi1 and Gfi1b were deleted, and observed an upregulation of Rag expression in plasmacytoid dendritic cells (pDCs). Using microarray analysis, we observed that Gfi1 and Gfi1b regulate a broad spectrum of cellular processes in pDCs, but not a lymphoid specific transcriptional program. This study establishes a role for Gfi1 and Gfi1b in Rag regulation in a non-B lineage cell type
Gfi1 and gfi1b repress rag transcription in plasmacytoid dendritic cells in vitro.
No sample metadata fields
View SamplesGenome-wide association studies (GWAS) have identified dozens of genomic loci, whose single nucleotide polymorphisms (SNPs) predispose to prostate cancer (PCa). However, the biological functions of these common genetic variants and the mechanisms to increase disease risk are largely unknown. We integrated chromatin-IP coupled sequencing (ChIP-seq) and microarray expression profiling in the TMPRSS2-ERG gene rearrangement positive DuCaP cell model with the NHGRI GWAS PCa risk SNPs catalog, in an attempt to identify disease susceptibility SNPs localized within functional androgen receptor binding sites (ARBSs). Among the 48 GWAS index SNPs and 2,702 linked SNPs defined by the 1000G project 104 were found to be localized in the AR ChIP-seq peaks. Of these risk SNPs, rs11891426 T/G in the 7th intron of its host gene melanophilin (MLPH) was found located within a putative auxiliary ARE motif, which we found enriched in the neighborhood of canonical ARE motifs. Exchange of T to G attenuated the transcriptional activity of the MLPH-ARBS in a reporter gene assay. The expression of MLPH protein in tissue samples from prostate cancer patients was significantly lower in those with the G compared to the T allele. Moreover, a significant positive correlation of AR and MLPH protein expression levels was also confirmed in tissue samples. These results unravel a hidden link between AR and a functional PCa risk SNP rs11891426, whose allele alteration affects androgen regulation of its host gene MLPH. This study shows the power of integrative studies to pin down functional risk SNPs and justifies further investigations.
Putative Prostate Cancer Risk SNP in an Androgen Receptor-Binding Site of the Melanophilin Gene Illustrates Enrichment of Risk SNPs in Androgen Receptor Target Sites.
Cell line, Treatment, Time
View SamplesWe used microarrays to detect the differences in gene-expression of the periontal ligament between patients with healthy periodontal ligament and patients with periodontitis
The pathology of bone tissue during peri-implantitis.
Specimen part
View SamplesIn this study we want to ascertain the differences and similarities of infected and inflammated peri implant tissue versus healthy peri implant tissue at the mRNA level.
The pathology of bone tissue during peri-implantitis.
Specimen part, Disease, Disease stage
View SamplesWe have conducted a screen for factors that downregulate expression of the genes encoding the V(D)J recombinase (RAG1 and RAG2) during B cell development. We have identified the transcription factor Gfi1B as being one of the proteins capable of decreasing RAG transcription when overexpressed in Ableson transormed ProB cell lines. We have yet to determine whether the overexpression of Gfi1B downregulates the RAGs directly, or whether it initiates a signalling programme that results in RAG downregulation. We hypothesize that by comparing global gene expression patterns in cells that overexpress Gfi1B and those that do not, we can distinguish between these possibilities and additionally gain insight into the broader genetic program that may be influenced by Gfi1B during hematopoiesis.
Gfi1b negatively regulates Rag expression directly and via the repression of FoxO1.
Cell line
View SamplesWNT-induced secreted protein 1 (WISP1/CCN4), a member of the CCN protein family, acts as a downstream factor of the canonical WNT-signaling pathway. A dysregulated expression of WISP1 often reflects its oncogenic potential by inhibition of apoptosis, a necessary form of cell death that protect cell populations for transformation into malignant phenotypes. WISP1-signaling is also known to affect proliferation and differentiation of human mesenchymal stem cells (hMSCs), which are fundamental for the constitution and maintenance of the musculoskeletal system. Our study emphasizes the importance of WISP1-signaling for cell survival of primary human cells. Therefore, we established a successful down-regulation of endogenous WISP1 transcripts through gene silencing in hMSCs. We were able to demonstrate the consequence of cell death immediately after WISP1 down-regulation took place. Bioinformatical analyses of subsequent performed microarrays from WISP1 down-regulated vs. control samples confirmed this observation. We uncovered several clusters of differential expressed genes important for cellular apoptosis induction and immuno-regulatory processes, thereby indicating TRAIL-induced and p53-mediated apoptosis as well as IFNbeta-signaling. Since all of them act as potent inhibitors for malignant cell growth, in vitro knowledge about the connection with WISP1-signaling could help to find new therapeutic approaches concerning cancerogenesis and tumor growth in musculoskeletal tissues.
WISP 1 is an important survival factor in human mesenchymal stromal cells.
Specimen part, Treatment
View SamplesHere we investigated whether sterile triggers of inflammation induce trained immunity and thereby influence innate immune responses. Western diet (WD) feeding of Ldlr-/- mice induced systemic inflammation, which was undectable in serum soon after mice were shifted back to chow diet (CD). In contrast, myeloid cell responses towards innate stimuli remained broadly augmented. WD induced transcriptomic and epigenomic reprogramming of myeloid progenitor cells, leading to increased proliferation as well as enhanced innate immune and interferon responses towards in vivo LPS challenge. QTL analysis in human monocytes trained with oxidized low-density lipoprotein (oxLDL) and stimulated with LPS suggested inflammasome-mediated trained immunity. Consistently, Nlrp3-/-/Ldlr-/--deficient mice lacked WD-induced systemic inflammation or myeloid progenitor proliferation and reprogramming. Hence, NLRP3 mediates trained immunity following WD and could thereby arbitrate the potentially deleterious effects of trained immunity in inflammatory diseases. Overall design: Examination of GMPs in six different conditions by RNA-seq
Western Diet Triggers NLRP3-Dependent Innate Immune Reprogramming.
Specimen part, Subject
View Samples