Thousands of long non-coding RNAs (lncRNAs) have been identified in the human genome, many of which are not conserved in lower mammals. The majority of these lncRNAs remain functionally uncharacterized and may have important implications in human physiology and disease. Here, we identify a primate-specific lncRNA, CHROME, which is increased in the plasma and atherosclerotic plaques of individuals with coronary artery disease compared to healthy controls. Using a loss-of-function approach, we show that CHROME functions as a competing endogenous RNA of microRNAs and regulates the concentration and biological functions of target genes. Overall design: We used three replicate samples of HEPG2 cells that were treated with shRNA for CHROME compated to three replicate control samples.
The long noncoding RNA CHROME regulates cholesterol homeostasis in primate.
Specimen part, Cell line, Subject
View SamplesMicroarrays have been widely used for the analysis of gene expression and several commercial platforms are available. The combined use of multiple platforms can overcome the inherent biases of each approach, and may represent an alternative that is complementary to RT-PCR for identification of the more robust changes in gene expression profiles.
Cross platform microarray analysis for robust identification of differentially expressed genes.
No sample metadata fields
View SamplesStem cell biology has garnered much attention due to its potential to impact human health through disease modeling and cell replacement therapy. This is especially pertinent to myelin-related disorders such as multiple sclerosis and leukodystrophies where restoration of normal oligodendrocyte function could provide an effective treatment. Progress in myelin repair has been constrained by the difficulty in generating pure populations of oligodendrocyte progenitor cells (OPCs) in sufficient quantities. Pluripotent stem cells theoretically provide an unlimited source of OPCs but significant advances are currently hindered by heterogeneous differentiation strategies that lack reproducibility. Here we provide a platform for the directed differentiation of pluripotent mouse epiblast stem cells (EpiSCs) through a defined series of developmental transitions into a pure population of highly expandable OPCs in ten days. These OPCs robustly differentiate into myelinating oligodendrocytes both in vitro and in vivo. Our results demonstrate that pluripotent stem cells can provide a pure population of clinically-relevant, myelinogenic oligodendrocytes and offer a tractable platform for defining the molecular regulation of oligodendrocyte development, drug screening, and potential cell-based remyelinating therapies.
Rapid and robust generation of functional oligodendrocyte progenitor cells from epiblast stem cells.
No sample metadata fields
View SamplesCD4+ T-cells isolated from three normal individuals and GM6990 cell lines (three biological replicates) are compared
DNase-chip: a high-resolution method to identify DNase I hypersensitive sites using tiled microarrays.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Discovery of drug mode of action and drug repositioning from transcriptional responses.
Specimen part, Cell line, Treatment
View SamplesThe effects of several compounds on the MCF7 human adenocarcinoma mammary cell line were analysed by gene expression profiling.
Discovery of drug mode of action and drug repositioning from transcriptional responses.
Specimen part, Cell line, Treatment
View SamplesThe effects of the CDK inhibitors PHA-848125 and PHA-690509 on the A2780 cell line were analysed by gene expression profiling.
Discovery of drug mode of action and drug repositioning from transcriptional responses.
Specimen part, Cell line, Treatment
View SamplesThe effects of the CDK inhibitor PHA-793887 on the A2780 human adenocarcinoma ovary cell line were analysed by gene expression profiling.
Discovery of drug mode of action and drug repositioning from transcriptional responses.
Specimen part, Cell line, Treatment
View SamplesThe effects of the CDK inhibitor PHA-848125 (referred to as CDK-125) on the MCF7 human adenocarcinoma mammary cell line were analysed by gene expression profiling.
Discovery of drug mode of action and drug repositioning from transcriptional responses.
Specimen part, Cell line, Treatment
View SamplesThe effects of the CDK inhibitor Flavopiridol on the A2780 human adenocarcinoma ovary cell line were analysed by gene expression profiling.
Discovery of drug mode of action and drug repositioning from transcriptional responses.
Specimen part, Cell line, Treatment
View Samples