Using a library of tagged UNC1215 analogs, we screened a protein domain microarray of methyl-lysine effector molecules to rapidly detect compounds with novel binding profiles. Using this approach, we identified a compound (EML405) that acquired a novel interaction with the Tudor domain-containing protein Spindlin1 (SPIN1). Structural studies revealed that the symmetric nature of EML405 allows it to simultaneously engage two of SPIN1's Tudor domains, and also facilitated the rational synthesis of more selective SPIN1 inhibitor (EML631). The EML631 compound engages SPIN1 in cells, blocks its ability to “read” H3K4me3 marks, and inhibits its transcriptional coactivator activity. Overall design: RNA-seq of control, SPIN1 siRNA knockdown (24 hour post-transfection) and EML631 treated (10 mM, 3 days) T778 cells
Developing Spindlin1 small-molecule inhibitors by using protein microarrays.
Specimen part, Subject
View SamplesHuman CD4 positive T cells were isolated from cord blood using CD4 positive isolation kit from Dynal. Cells were activated with plate bound anti-CD3 and soluble anti-CD28 in presence (iTreg) or absence (Th0) of IL2, TGF beta and ATRA. The cells were harvested at 0, 0.5, 1, 2, 4, 6, 12, 24, 48, and 72 hours. Overall design: Comparing the gene expression in activated CD4+ cells and iTreg differentiated cells in human. 9 time points, 3 replicates for each time point.
Transcriptional Repressor HIC1 Contributes to Suppressive Function of Human Induced Regulatory T Cells.
Specimen part, Subject
View Samples