Refined cancer models are required to assess the burgeoning number of potential targets for cancer therapeutics within a rapid and clinically relevant context. Here we utilize tumor-associated genetic pathways to transform primary human epithelial cells from epidermis, oropharynx, esophagus, and cervix into genetically defined tumors within an entirely human 3-dimensional (3-D) tissue environment incorporating cell-populated stroma and intact basement membrane (BM). These engineered organotypic tissues recapitulated natural features of tumor progression, including epithelial invasion through the BM, a complex process critically required for biologic malignancy in 90% of human cancers. Invasion was rapid, and potentiated by stromal cells. Oncogenic signals in 3-D tissue, but not 2-D culture, resembled gene expression profiles from spontaneous human cancers. Screening well-characterized signaling pathway inhibitors in 3-D organotypic neoplasia helped distil a clinically faithful cancer gene signature. Multi-tissue 3-D human tissue cancer models may provide an efficient and relevant complement to current approaches to characterize cancer progression.
Invasive three-dimensional organotypic neoplasia from multiple normal human epithelia.
No sample metadata fields
View SamplesRefined cancer models are required to assess the burgeoning number of potential targets for cancer therapeutics within a rapid and clinically relevant context. Here we utilize tumor-associated genetic pathways to transform primary human epithelial cells from epidermis, oropharynx, esophagus, and cervix into genetically defined tumors within an entirely human 3-dimensional (3-D) tissue environment incorporating cell-populated stroma and intact basement membrane (BM). These engineered organotypic tissues recapitulated natural features of tumor progression, including epithelial invasion through the BM, a complex process critically required for biologic malignancy in 90% of human cancers. Invasion was rapid, and potentiated by stromal cells. Oncogenic signals in 3-D tissue, but not 2-D culture, resembled gene expression profiles from spontaneous human cancers. Screening well-characterized signaling pathway inhibitors in 3-D organotypic neoplasia helped distil a clinically faithful cancer gene signature. Multi-tissue 3-D human tissue cancer models may provide an efficient and relevant complement to current approaches to characterize cancer progression.
Invasive three-dimensional organotypic neoplasia from multiple normal human epithelia.
Specimen part
View SamplesOncogenic Ras induces epidermal cell growth arrest. Induction of the JNK/Ap1 signaling cascade by expression of MKK7 overcomes Ras-induced cell growth arrest in a manner dependent on AP1 fucntion.
Tumor necrosis factor receptor 1/c-Jun-NH2-kinase signaling promotes human neoplasia.
No sample metadata fields
View SamplesMelanocytes within benign human nevi are the paradigm for tumor suppressive senescent cells in a pre-malignant neoplasm. These cells typically contain mutations in either the BRAF or N-RAS oncogene and express markers of senescence, including p16. However, a nevus can contain 10s to 100s of thousands of clonal melanocytes and approximately 20-30% of melanoma are thought to arise in association with a pre-existing nevus. Neither observation is indicative of fail-safe senescence-associated proliferation arrest and tumor suppression. We set out to better understand the status of nevus melanocytes. Proliferation-promoting Wnt target genes, such as cyclin D1 and c-myc, were repressed in oncogene-induced senescent melanocytes in vitro, and repression of Wnt signaling in these cells induced a senescent-like state. In contrast, cyclin D1 and c-myc were expressed in many melanocytes of human benign nevi. Specifically, activated Wnt signalling in nevi correlated inversely with nevus maturation, an established dermatopathological correlate of clinical benignancy. Single cell analyses of lone epidermal melanocytes and nevus melanocytes showed that expression of proliferation-promoting Wnt targets correlates with prior proliferative expansion of p16-expressing nevus melanocytes. In a mouse model, activation of Wnt signaling delayed, but did not bypass, senescence of oncogene-expressing melanocytes, leading to massive accumulation of proliferation-arrested, p16-positive non-malignant melanocytes. We conclude that clonal hyperproliferation of oncogene-expressing melanocytes to form a nevus is facilitated by transient delay of senescence due to activated Wnt signaling. The observation that activation of Wnt signaling correlates inversely with nevus maturation, an indicator of clinical benignancy, supports the notion that persistent destabilization of senescence by Wnt signaling contributes to the malignant potential of nevi. Overall design: We used RNA-Seq to detail the global programme of gene expression in human melanoma cell lines
MLL1 is essential for the senescence-associated secretory phenotype.
Cell line, Subject
View SamplesOncogene-induced senescence (OIS) and therapy-induced senescence (TIS), while tumor-suppressive, also promote procarcinogenic effects by activating the DNA damage response (DDR), which in turn induces inflammation. This inflammatory response prominently includes an array of cytokines known as the senescence-associated secretory phenotype (SASP). Previous observations link the transcription-associated methyltransferase and oncoprotein MLL1 to the DDR, leading us to investigate the role of MLL1 in SASP expression. Our findings reveal direct MLL1 epigenetic control over proproliferative cell cycle genes: MLL1 inhibition represses expression of proproliferative cell cycle regulators required for DNA replication and DDR activation, thus disabling SASP expression. Strikingly, however, these effects of MLL1 inhibition on SASP gene expression do not impair OIS and, furthermore, abolish the ability of the SASP to enhance cancer cell proliferation. More broadly, MLL1 inhibition also reduces “SASP-like” inflammatory gene expression from cancer cells in vitro and in vivo independently of senescence. Taken together, these data demonstrate that MLL1 inhibition may be a powerful and effective strategy for inducing cancerous growth arrest through the direct epigenetic regulation of proliferation-promoting genes and the avoidance of deleterious OIS- or TIS-related tumor secretomes, which can promote both drug resistance and tumor progression. Overall design: This study consists of a single replicate of RNA-seq from oncogene-induced senescent (or control) IMR90 cells in a MLL1 knockdown (or WT) background, for a total of four samples
MLL1 is essential for the senescence-associated secretory phenotype.
No sample metadata fields
View SamplesWe profile gene expression changes in two mutant strains lacking the D. melanogaster HP1 homolog HP1B at the third instar larval stage. Compared to the yw control strain, several hundred genes are deregulated, with metabolic genes being over-represented among the deregulated gene set. Overall design: Examination of gene expression in two genotypes
HP1B is a euchromatic Drosophila HP1 homolog with links to metabolism.
Specimen part, Cell line, Subject
View SamplesMicroarray analysis was performed on retina/RPE/choroid samples taken from the right eyes of male chicks across control and recovery from form deprivation conditions.
Pathway analysis identifies altered mitochondrial metabolism, neurotransmission, structural pathways and complement cascade in retina/RPE/ choroid in chick model of form-deprivation myopia.
Sex, Specimen part, Treatment, Time
View SamplesBackground. Differential gene expression in adipose tissue during diet-induced weight loss followed by a weight stability period is not well characterized. Markers of these processes may provide a deeper understanding of the underlying mechanisms. Objective. To identify differentially expressed genes in human adipose tissue during weight loss and weight maintenance after weight loss. Design. RNA from subcutaneous abdominal adipose tissue from nine obese subjects was obtained and analyzed at baseline, after weight reduction on a low calorie diet (LCD), and after a period of group therapy in order to maintain weight stability. Results. Subjects lost 18.8 + 5.4% of their body weight during the LCD and maintained this weight during group therapy. Insulin sensitivity (HOMA) improved after weight loss with no further improvement during weight maintenance. Cyclin-dependent kinase inhibitor 2B (CDKN2B) and JAZF zinc finger 1 (JAZF1), associated with type 2 diabetes, were downregulated. We could also confirm the downregulation of candidates for obesity and related traits, such as tenomodulin (TNMD) and matrix metallopeptidase 9 (MMP9), with weight loss. The expression of other candidates, such as cell death-inducing DFFA-like effector A (CIDEA) and stearoyl-CoA desaturase (SCD) were upregulated during weight loss but returned to baseline levels during weight maintenance. Conclusion. Genes in the adipose tissue are differentially expressed during weight loss and weight maintenance after weight loss. Genes that show sustained regulation may be of potential interest as markers of the beneficial effects of weight loss whereas others seem to be primarily involved in the process of weight loss itself.
Differential gene expression in adipose tissue from obese human subjects during weight loss and weight maintenance.
Sex, Age
View SamplesDiurnal temperature cycling is an intrinsic characteristic of many exposed microbial ecosystems. However, its influence on yeast physiology and transcriptome has not been studied in detail. In this study, 24-h sinoidal temperature cycles, oscillating between 12 and 30C, were imposed on anaerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae. After three diurnal temperature cycles (DTC), concentrations of glucose, and extracellular metabolites, as well as CO2-production rates showed regular, reproducible circadian rhytms. DTC also led to waves of transcriptional activation and repression, which involved one sixth of the yeast genome. A substantial fraction of these DTC-responsive genes appeared to primarily respond to changes in glucose concentration. Elimination of known glucose-responsive genes revealed overrepresentation of previously identified temperature-responsive genes as well as genes involved in cell cycle and de novo purine biosynthesis. Analyses of budding index and flow cytomery demonstrated that DTC led to a partial synchronization of the cell cycle of the yeast populations in the chemostat cultures, which was lost upon release from DTC. Comparison of DTC results with data from steady-state cultures showed that DTC was sufficiently slow to allow S. cerevisiae chemostat cultures to almost completely acclimatize their transcriptome and physiology at the DTC temperature maximum, and to approach acclimation at the DTC temperature minimum.
Physiological and transcriptional responses of anaerobic chemostat cultures of Saccharomyces cerevisiae subjected to diurnal temperature cycles.
No sample metadata fields
View SamplesIn order to establish a list of candidate direct COUP-TFI gene targets in the inner ear, we analyzed the differential gene expression profiles of the wild-type and the COUP-TFI/ P0 inner ears.
Genome-wide analysis of binding sites and direct target genes of the orphan nuclear receptor NR2F1/COUP-TFI.
Specimen part
View Samples