FOXE3 is a lens specific transcription factor that has been associated with anterior segment ocular dysgenesis. To determine the transcriptional target(s) of FOXE3 that are indispensable for the anterior segment development, we examined the transcriptome and the proteome of cells expressing truncated FOXE3 responsible for Peters anomaly identified through linkage-coupled next-generation whole exome sequencing. We found that DNAJB1, an autophagy-associated protein, was the only candidate exhibiting differential expression in both screens. We confirmed the candidacy of DNAJB1 through chromatin immunoprecipitation and luciferase assays while knockdown of DNAJB1 in human lens epithelial cells resulted in mitotic arrest. Subsequently, we targeted dnajb1a in zebrafish through injection of a splice-blocking morpholino. The dnajb1a morphants exhibited underdeveloped cataractous lenses with persistent apoptotic nuclei. In conclusion, we have identified DNAJB1 as a transcriptional target of FOXE3 in a novel pathway that is crucial for development of the anterior segment of the eye. Overall design: Human Embryonic Kidney (HEK293FT) cells were transfected with the expression vector (pT-RexTM-DEST30) harboring either the wild type or the mutant (C240*) FOXE3 ORF (open reading frame). The experimental design included a total of eight biological replicates of cells expressing the wild type and eight replicates of mutant FOXE3 along with eight non-transfected controls. Cells were harvested 24-hour post-transfection and subjected to total RNA isolation for the preparation of whole transcriptome next-generation sequencing libraries. Initially, we examined the quality of transcriptome libraries on a MiSeq genome analyzer. Subsequent to confirmation of the quality, all libraries were paired-end sequenced (2 x 100 bp) using Illumina TruSeq Cluster V3 flow cell at a concentration of 13.0 pM in two separate lanes (12 bar-coded mRNA pooled libraries in each lane) on a HiSeq 2000 genome analyzer.
FOXE3 contributes to Peters anomaly through transcriptional regulation of an autophagy-associated protein termed DNAJB1.
No sample metadata fields
View SamplesGene expression analysis under normal culture conditions (RPMI-10%FBS) and at optimal cell densities.
Low-risk susceptibility alleles in 40 human breast cancer cell lines.
Cell line
View SamplesPurpose: Transcriptome is the entire repertoire of all transcripts present in a cell at any particular time. We undertook next-generation whole transcriptome sequencing approach to gain insight of the transcriptional landscape of the developing mouse lens. Methods: We ascertained mice lenses at six developmental time points including two embryonic (E15 and E18) and four postnatal stages (P0, P3, P6, and P9). The ocular tissue at each time point was maintained as two distinct pools serving as biological replicates for each developmental stage. The mRNA and small RNA libraries were paired-end sequenced on Illumina HiSeq 2000 and subsequently analyzed using bioinformatics tools. Results: Mapping of mRNA and small RNA libraries generated 187.56 and 154.22 million paired-end reads, respectively. We detected a total of 14,465 genes in the mouse ocular lens. Of these, 46 genes exhibited 40-fold differential expression compared to transcriptional levels at E15. Likewise, small RNA profiling identified 379 microRNAs (miRNAs) expressed in mouse lens. Of these, 49 miRNAs manifested an 8-fold or higher differential expression when compared, as above to the microRNA expression at E15. Conclusion: We report the first comprehensive profile of developing murine lens transcriptome including both mRNA and miRNA through next-generation RNA sequencing. A complete repository of the lens transcriptome of six developmental time points will be monumental in elucidating processes essential for development of the ocular lens and maintenance its transparency. Overall design: Whole transcrtiome and microRNA profilling of mouse lens using 2 embryonic (E15 and E18) and 4 postnatal stages (P0, P3, P6 and P9) in duplicates through high-throughput sequening using Illumina HiSeq2000.
Identification of novel transcripts and peptides in developing murine lens.
No sample metadata fields
View SamplesBreast cancer is a genetically and phenotypically complex disease. To understand the role of microRNAs in this molecular complexity, we performed miRNA expression analysis in a cohort of molecularly well-characterized human breast cancer (BC) cell lines to discover miRNAs associated with the most common molecular subtypes and the most frequent genetic aberrations.Using a microarray carrying LNA modified oligonucleotide capture probes (Exiqon), expression levels of 725 human miRNAs were measured in 51 BC cell lines. MiRNA expression was explored by unsupervised cluster analysis and then associated with the molecular subtypes and genetic aberrations commonly present in breast cancer. Unsupervised cluster analysis using the most variably expressed miRNAs divided the 51 BC cell lines into a major and a minor cluster predominantly mirroring the luminal and basal intrinsic subdivision of BC cell lines. One hundred and thirteen miRNAs were differentially expressed between these two main clusters of which half were related to the ER-status of the cell lines. Forty miRNAs were differentially expressed between basal-like and normal-like/claudin-low cell lines. Within the luminal-group of cell lines, 39 miRNAs were associated with ERBB2 overexpression and 24 miRNAs with E-cadherin gene mutations, which are frequent in this subtype of BC cell lines. In contrast, 31 different miRNAs were associated with E-cadherin promoter hypermethylation, which, contrary to E-cadherin mutation, is exclusively observed in BC cell lines that are not of luminal origin. The differential expression of 30 miRNAs were associated with p16INK4 status while only a few differentially expressed miRNAs were associated with BRCA1, or PIK3CA/PTEN, TP53 mutation status of the cell lines (P-value < 0.05). Twelve miRNAs were associated with DNA copy number variation of the respective locus. Luminal-basal and epithelial-mesenchymal associated miRNAs determine the overall subdivision of miRNA transcriptome of BC cell lines. Specific sets of miRNAs were associated with ERBB2 overexpression, p16INK4aor E-cadherin mutation or E-cadherin methylation status, which implies that these miRNAs may contribute to the driver role of the genetic aberrations. Additionally, miRNAs, which are located in a genomic region showing recurrent genetic aberrations, may themselves play a driver role in breast carcinogenesis or contribute to a driver gene in their vicinity. In short, our study provides detailed molecular miRNA portraits of BC cell lines, which can be exploited for functional studies of clinically important miRNAs.
miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs.
Cell line
View SamplesBreast carcinoma (BC) have been extensively profiled by high-throughput technologies for over a decade, and broadly speaking, these studies can be grouped into those that seek to identify patient subtypes (studies of heterogeneity) or those that seek to identify gene signatures with prognostic or predictive capacity. The shear number of reported signatures has led to speculation that everything is prognostic in BC. Here we show that this ubiquity is an apparition caused by a poor understanding of the inter- relatedness between subtype and the molecular determinants of prognosis. Our approach constructively shows how to avoid confounding due to a patient's subtype, clinicopathological or treatment profile. The approach identifies patients who are predicted to have good outcome at time of diagnosis by all available clinical and molecular markers, but who experience a distant metastasis within five years. These inherently difficult patients (~7% of BC) are prioritized for investigations of intra-tumoral heterogeneity.
The prognostic ease and difficulty of invasive breast carcinoma.
Age, Disease stage, Time
View SamplesComparing WT mice to a mouse model of mental retardation, this work identifies genes which display differences in ribosome-bound mRNAs, in hippocampus CA1 pyramidal cells. These genes products are potent functional components of neuronal plasticity and hippocampus-dependent memory. Overall design: Using a triple transgenic mouse line, we immunoprecipitated the HA-Rpl22 protein to isolate and sequence ribosome-associated mRNA in CA1 pyramidal cells. Pairwise comparison of wild type and Fmr1 KO mice defined a specific gene expression profile.
Cell Type-Specific mRNA Dysregulation in Hippocampal CA1 Pyramidal Neurons of the Fragile X Syndrome Mouse Model.
Specimen part, Subject
View SamplesTranscriptome analysis on ING5-knockdown brain tumor stem cell lines
ING5 activity in self-renewal of glioblastoma stem cells via calcium and follicle stimulating hormone pathways.
Specimen part, Cell line
View SamplesMany studies have characterized the results of shear stress changes on cultured endothelial cells in different bioreactor systems. However it is still unclear how an invasive intervention like stent procedure may influence the transcriptional response of endothelium.
Vascular injury post stent implantation: different gene expression modulation in human umbilical vein endothelial cells (HUVECs) model.
Specimen part
View SamplesIn order to determine the imprinted transcription factor Zac1 targets, we overexpressed Zac1 in a mouse insulinoma cell line and measured the regulated expressed genes by RNA-seq. We have shown that Zac1 regulates many genes belonging to the Imprinted Gene Network, including genes coding for the extra-cellular matrix. Overall design: Determination of Zac1 target genes in transfected Min6 cells (4 biological replicates) using RNA-seq, .
Identification of Plagl1/Zac1 binding sites and target genes establishes its role in the regulation of extracellular matrix genes and the imprinted gene network.
Specimen part, Subject
View SamplesPurpose: Investigating the role of Drosophila G9a in oxidative stress responses. Methods: Flies were collected after eclosion and allowed to recover from CO2 exposure for 5 days prior to paraquat exposure. Paraquat (Methyl viologen dichloride hydrate 98 %; Sigma 856177) was mixed into the flyfood at 40 °C to a final concentration of 50 mM. For OS induction, 5-9 day old flies were transferred to paraquat containing food and incubated at 25 °C and 70 % humidity. At each time point, flies were flash frozen in liquid nitrogen followed by vortexing and filtering through a series of sieves to isolate heads from other body parts. 200 fly heads per sample were used for RNA extraction using QIAGEN lipid mini tissue kit. The TruSeq RNA Sample Preparation Kit v2 (Illumina) was used to prepare adapter ligated PCR fragments for sequencing. PCR was used to selectively enrich the fragments containing the adapters. The PCR fragments were validated using Agilent 2200 TapeStation. Single indexed samples were multiplexed and sequenced on an Illumina HiSeq 2000 sequencing system (Illumina) in single-end mode with a read length of 35 bp. Quality of sequenced reads was assessed with FastQC. The RNAseq experiments were conducted on two biological duplicates for each condition. Sequenced reads were aligned with Burrows-Wheeler algorithm (BWA) (Li & Durbin, 2010) to the Drosophila reference genome (BDGP.5, http://www.fruitfly.org/) and per gene read counts were generated with HTSeq count (Anders et al, 2015). 25–30 million reads with high quality alignment were obtained for each sample and used for differential expression analysis. DESeq (Anders & Huber, 2010) was used to obtain library size-normalized read counts and to calculate differential expression of genes in 4 pairwise comparisons: 0 h versus 6 h and 0 h versus 12 h after OS in both G9a mutants and controls (fold change =1.5, adjusted p-value= 0.05, Benjamini-Hochberg). Results: We found 2731 genes to be differential expressed in at least one of the four pairwise comparisons. The largest group of differentially expressed (DE) genes are highly augmented upon OS induction in the G9a mutant (41.7 % of all DE genes). The second largest group of DE genes (23.9 % of all DE genes) were more downregulated in G9a mutant in response to OS. Genes that are over-activated in G9a mutants are predominantly involved in OS response and OS mediated damage, whereas genes that are downregulated in G9a mutants are involved in energy metabolism. Conclusions: Our data suggest that G9a provides an epigenetic mechanism that safeguards an appropriate transcriptional response to OS and preserves immediately available energy, thereby acting as a critical regulatory hub between the transcriptional and physiological responses to oxidative stress. Overall design: fly-head mRNA libraries of 5-9 days old male G9aDD1 mutant and control during 0, 6 and 12 hours of paraquat oxidative stress exposure were sequenced in duplicate on Hi-seq 2000.
The histone methyltransferase G9a regulates tolerance to oxidative stress-induced energy consumption.
Specimen part, Treatment, Subject
View Samples