The molecular etiology of invididual differences in complex behavior traits and susceptibility to psychiatric illness remains incomplete. Using an unbiased genetic approach in a mouse model, Quantitative Trait Loci (QTL) influencing anxiety-like behaviors and beta-carboline-induced seizure vulnerability have been mapped to the distal portion of mouse chromosome 10 and an interval specific congenic strain (ISCS; A.B6chr10; 66 cM to telomere) was developed. This A.B6chr10 strain facilitated defining the behavioral influences of this region as well as gene expression profiling to identify candidate gene(s) underlying this QTL. By microarray studies, an unsuspected E3 Ubiquitin Ligase, Ring Finger 41 (Rnf41 / Neuregulin Receptor Degrading Protein1; Nrdp1) was differentially expressed in the region of interest, comparing the hippocampi of A/J vs A.B6chr10 mice as well as A/J vs B6 mice. By RT-PCR, Rnf41 expression levels were significantly increased 1.5 and 1.3-fold in the hippocampi of C57BL6/J and A.B6chr10 mice compared to A/J mice, respectively. In addition, protein levels of Rnf41 were increased in hippocampi of B6 mice compared to A/J mice across postnatal development with a 5.5-fold difference at P56. Among LxS recombinant inbred mice (N=33), Rnf41 hippocampal mRNA expression levels were significantly correlated with open field behavior (r= .454, p=.0073). Re-analyzing a microarray database of human post-mortem prefrontal cortex (Brodmanns Area 46/10), RNF41 mRNA expression levels were reduced significantly in patients with major depression and bipolar disorder compared to unaffected controls. Overall, Rnf41 is a pleiotropic candidate gene for anxiety-like behaviors, depression, and vulnerability to seizures. RNF41 and its binding partners provide novel etiological pathways for influencing behavior, highlighting a potential role for the ubiquitin proteasome system in psychiatric illness.
An E3 ubiquitin ligase, Really Interesting New Gene (RING) Finger 41, is a candidate gene for anxiety-like behavior and beta-carboline-induced seizures.
No sample metadata fields
View SamplesThe translocation t(7;12)(q36;p13) occurs in infants and very young children with AML and usually has a fatal prognosis. Whereas the transcription factor ETV6, located at chromosome 12p13, has largely been studied in different leukemia types, the influence of the translocation partner HB9 (chr. 7q36), is still unknown. This is particularly surprising as ectopic expression of HB9 is the only recurrent molecular hallmark of translocation t(7;12) AML. We investigated the influence of HB9 as a potential oncogene on cell proliferation and cell cycle in vitro, as well as on hematopoietic stem cell differentiation in vivo using murine and human model systems. We show, that HB9 induces premature senescence in human HT1080 and murine NIH3T3 cells, providing for the first time evidence for an oncogenic potential of HB9. Furthermore, HB9-transduced primary murine hematopoietic stem and progenitor cells underwent a profound differentiation arrest and accumulated at the megakaryocyte/erythrocyte progenitor stage, resulting in a premalignant myeloid cell population in vivo. Concomitantly, HB9 expression upregulates erythropoiesis-related genes in primary human hematopoietic stem and progenitor cells, and enriches gene expression profiles for cell cycle and mitosis-related biological processes. In summary, the novel findings of HB9 dependent premature senescence and perturbed hematopoietic differentiation shed light on the oncogenic properties of HB9 in translocation t(7;12) AML and offer novel targets for therapeutic intervention. Overall design: CD34+ cells were transduced with either GFP or HB9
The homeobox transcription factor HB9 induces senescence and blocks differentiation in hematopoietic stem and progenitor cells.
Specimen part, Subject
View SamplesExpression data were generated on 136 subjects from the COPDGene study using Affymetrix microarrays. Multiple linear regression with adjustment for covariates (gender, age, body mass index, family history, smoking status, pack years) was used to identify candidate genes and Ingenuity Pathway Analysis was used to identify candidate pathways.
Peripheral blood mononuclear cell gene expression in chronic obstructive pulmonary disease.
Sex, Specimen part
View SamplesA375P melanoma cells were treated with 1uM of the MEK inhibitor PD184352 or 0.4uM of the V600EBRAF inhibitor PLX4720 for 2hr, 6hr and 24hrs.
Identification of direct transcriptional targets of (V600E)BRAF/MEK signalling in melanoma.
Cell line, Treatment, Time
View SamplesThe development of high-throughput genomic technologies has revealed that a large fraction of the genomes of eukaryotes is associated with the expression of noncoding RNAs. One class of noncoding RNA, the cis-natural antisense transcripts (cis-NATs), are particularly interesting as they are at least partially complementary to the protein-coding mRNAs. Although most studies described cis-NATs involved in the regulation of transcription, a few reports have shown recently that cis-NATs can also regulate translation of the cognate sense coding genes in plants and mammals. In order to identify novel examples of translation regulator cis-NATs in Arabidopsis thaliana, we designed a high-throughput experiment based on polysome profiling and RNA-sequencing. Expression of cis-NATs and translation efficiency of the cognate coding mRNAs were measured in roots and shoots in response to various conditions, including phosphate deficiency and treatment with phytohormones. We identified several promising candidates, and validated a few of them experimentally, in Arabidopsis thaliana transgenic lines over-expressing in trans the translation regulator candidate cis-NATs. Overall design: total RNA and polysomal RNA was sequenced from Arabidopsis thaliana whole seedlings grown in high or low pohsphate content, or from roots or shoots from seedlings treated or not with different phytohormones (Ctrl, IAA, ABA,MeJA and ACC). 3 biological replicates were analyzed for each of the 12 experimental conditions.
Prediction of regulatory long intergenic non-coding RNAs acting in trans through base-pairing interactions.
Specimen part, Treatment, Subject
View SamplesUstilago maydis is a basidiomycete fungus that causes smut disease in maize. Most prominent symptoms of the disease are plant tumors, which can be induced by U. maydis on all aerial parts of the plant. We identified two linked genes, pit1 and pit2, which are specifically expressed during plant colonization. Deletion mutants for either pit1 or pit2 are unable to induce tumor development and elicit plant defense responses.
Two linked genes encoding a secreted effector and a membrane protein are essential for Ustilago maydis-induced tumour formation.
Specimen part, Disease, Disease stage
View SamplesBiopsies from uninvolved and from lesional skin of 13 patients with plaque-type psoriasis. Based on paired samples, 179 genes were more than 2-fold differentially expressed in lesional skin.
Increased expression of Wnt5a in psoriatic plaques.
Sex, Age
View SamplesOne of the most common genetic alterations in acute myeloid leukemia is the internal tandem duplication (ITD) in the FLT3 receptor for cytokine FLT3 ligand (FLT3L). The constitutively active FLT3-ITD promotes the expansion of transformed progenitors, but also has pleiotropic effects on normal hematopoiesis. We analyzed the effect of FLT3-ITD on dendritic cells (DCs), which express FLT3 and can be expanded by FLT3L administration. We report that young pre-leukemic mice with the Flt3ITD knock-in allele manifest an expansion of all DCs including classical (cDCs) and plasmacytoid (pDCs). The expansion originated in DC progenitors, occurred in a cell-intrinsic manner and was further enhanced in Flt3ITD/ITD mice. The mutation caused the downregulation of Flt3 on the surface of DCs and reduced their responsiveness to Flt3L. Flt3ITD mice showed enhanced capacity to support T cell proliferation, including a cell-extrinsic expansion of regulatory T cells (Tregs). Accordingly, these mice restricted alloreactive T cell responses during graft-versus-host reaction, but failed to control autoimmunity in the absence of Tregs. Thus, the FLT3-ITD mutation directly affects DC development, thereby indirectly modulating T cell homeostasis and supporting Treg expansion. This effect of FLT3-ITD may subvert immunosurveillance and promote leukemogenesis in a cell-extrinsic manner. Overall design: Sorted splenic dendritic cell subsets from either Flt3+/+ or Flt3ITD/+ mice were sequenced for mRNA profiling. For each subset per genotype contains 2-3 replicates, all from independent experiments.
Leukemia-associated activating mutation of Flt3 expands dendritic cells and alters T cell responses.
Specimen part, Cell line, Subject
View SamplesImpaired DNA replication is a hallmark of cancer and a cause of genomic instability. We report that, in addition to causing genetic change, impaired DNA replication during embryonic development can have major epigenetic consequences for a genome. In a genome-wide screen, we identified impaired DNA replication as causing increased expression from a repressed transgene in Caenorhabditis elegans. The acquired expression state behaved as an “epiallele,” being inherited for multiple generations before fully resetting. Derepression was not restricted to the transgene but was caused by a global reduction in heterochromatin-associated histone modifications due to the impaired retention of modified histones on DNA during replication in the early embryo. Impaired DNA replication during development can therefore globally derepress chromatin, creating new intergenerationally inherited epigenetic expression states. Overall design: 3 replicates of div-1 mutant worms and N2 wild type worms
Impaired DNA replication derepresses chromatin and generates a transgenerationally inherited epigenetic memory.
Specimen part, Subject
View SamplesThe macrolide rapamycin is known for its immunosuppressive properties since it inhibits mTOR (mammalian target of rapamycin), which activity affects differentiation and functions of various innate and adaptive immune cells involved in graft-versus-host disease development. Since rapamycin procures immunosuppressive effects on the immune response, rapamycin is an attractive candidate for graft-versus-host disease prevention after allogeneic bone marrow transplantation
Rapamycin-based graft-versus-host disease prophylaxis increases the immunosuppressivity of myeloid-derived suppressor cells without affecting T cells and anti-tumor cytotoxicity.
No sample metadata fields
View Samples