We previously identified a novel SNF1/AMPK-related protein kinase, Hunk, from a mammary tumor arising in an MMTV-neu transgenic mouse. The function of this kinase is unknown. Using targeted deletion in mice, we now demonstrate that Hunk is required for the metastasis of c-myc-induced mammary tumors, but is dispensable for normal development. Reconstitution experiments revealed that Hunk is sufficient to restore the metastatic potential of Hunk-deficient tumor cells, as well as defects in migration and invasion, and does so in a manner that requires its kinase activity. Consistent with a role for Hunk in the progression of human cancers, the human homologue of Hunk is overexpressed in aggressive subsets of carcinomas of the ovary, colon, and breast. In addition, a murine gene expression signature that distinguishes Hunk-wild type from Hunk-deficient mammary tumors predicts clinical outcome in women with breast cancer. Together, these findings establish a role for Hunk in metastasis and an in vivo function for this kinase.
The Snf1-related kinase, Hunk, is essential for mammary tumor metastasis.
No sample metadata fields
View SamplesZXDC1 augments the expression of various markers of monocyte/macrophage differentiation when over-expressed in the U937 cell line treated with the phorbol ester PMA. Likewise, knockdown of ZXDC1 restricts the induced expression of these markers. We sought to identify specfic gene targets of ZXDC1 during the process of monocyte/macrophage differentiation in U937 by performing gene expression profiling in cells exhibiting reduced expression of ZXDC1 compared to controls.
The zinc finger transcription factor ZXDC activates CCL2 gene expression by opposing BCL6-mediated repression.
Specimen part, Cell line
View SamplesIn the diploid genome, genes come in two copies, which can have different DNA sequence and where one is maternal and one is paternal. In a particular cell, a gene could potentially be expressed from both copies (biallelic expression) or only one (monoallelic). We performed RNA-Sequencing on individual cells, from zygote to the cells of the late blastocyst, and also individual cells from the adult liver. Using first generation crosses between two distantly related mouse strains, CAST/Ei and C57BL/6, we determined the expression separately from the maternal and paternal alleles. We found that half of the genes were expressed by only one allele, randomly so that some cells would express the paternal allele, some the maternal and a few cell both alleles. We also observed the spread of the progressive inactivation of the paternal X chromosome. Overall design: First generation mouse strain crosses were used to study monoallelic expression on the single cell level
Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells.
No sample metadata fields
View SamplesNeural circuits in the medial entorhinal cortex (MEC) encode an animal’s position and orientation in space. Within the MEC spatial representations, including grid and directional firing fields, have a laminar and dorsoventral organization that corresponds to a similar topography of neuronal connectivity and cellular properties. Yet, in part due to the challenges of integrating anatomical data at the resolution of cortical layers and borders, we know little about the molecular components underlying this organization. To address this we develop a new computational pipeline for high-throughput analysis and comparison of in situ hybridization (ISH) images at laminar resolution. We apply this pipeline to ISH data for over 16,000 genes in the Allen Brain Atlas and validate our analysis with RNA sequencing of MEC tissue from adult mice. We find that differential gene expression delineates the borders of the MEC with neighboring brain structures and reveals its laminar and dorsoventral organization. Our analysis identifies ion channel-, cell adhesion- and synapse-related genes as candidates for functional differentiation of MEC layers and for encoding of spatial information at different scales along the dorsoventral axis of the MEC. Our results support the hypothesis that differences in gene expression contribute to functional specialization of superficial layers of the MEC and dorsoventral organization of the scale of spatial representations. Overall design: Examination of dorsal and ventral regions from 4 replicate samples each containing pooled data from 3-4 mice
Laminar and dorsoventral molecular organization of the medial entorhinal cortex revealed by large-scale anatomical analysis of gene expression.
No sample metadata fields
View SamplesThe tumor microenvironment strongly influences cancer development, progression and metastasis. The role of carcinoma-associated fibroblasts (CAFs) in these processes and their clinical impact has not been studied systematically in non-small cell lung carcinoma (NSCLC). We established primary cultures of CAFs and matched normal fibroblasts (NFs) from 15 resected NSCLC. We demonstrate that CAFs have greater ability than NFs to enhance the tumorigenicity of lung cancer cell lines. Microarray gene expression analysis of the 15 matched CAF and NF cell lines identified 46 differentially expressed genes, encoding for proteins that are significantly enriched for extracellular proteins regulated by the TGF-beta signaling pathway. We have identified a subset of 11 genes that formed a prognostic gene expression signature, which was validated in multiple independent NSCLC microarray datasets. Functional annotation using protein-protein interaction analyses of these and published cancer stroma-associated gene expression changes revealed prominent involvement of the focal adhesion and MAPK signalling pathways. Fourteen (30%) of the 46 genes also were differentially expressed in laser-capture micro-dissected corresponding primary tumor stroma compared to the matched normal lung. Six of these 14 genes could be induced by TGF-beta1 in NF. The results establish the prognostic impact of CAF-associated gene expression changes in NSCLC patients.
Prognostic gene-expression signature of carcinoma-associated fibroblasts in non-small cell lung cancer.
Sex, Age, Disease, Disease stage, Cell line
View SamplesThe tumor microenvironment strongly influences cancer development, progression and metastasis. The role of carcinoma-associated fibroblasts (CAFs) in these processes and their clinical impact has not been studied systematically in non-small cell lung carcinoma (NSCLC). We established primary cultures of CAFs and matched normal fibroblasts (NFs) from 15 resected NSCLC. We demonstrate that CAFs have greater ability than NFs to enhance the tumorigenicity of lung cancer cell lines. Microarray gene expression analysis of the 15 matched CAF and NF cell lines identified 46 differentially expressed genes, encoding for proteins that are significantly enriched for extracellular proteins regulated by the TGF-beta signaling pathway. We have identified a subset of 11 genes that formed a prognostic gene expression signature, which was validated in multiple independent NSCLC microarray datasets. Functional annotation using protein-protein interaction analyses of these and published cancer stroma-associated gene expression changes revealed prominent involvement of the focal adhesion and MAPK signalling pathways. Fourteen (30%) of the 46 genes also were differentially expressed in laser-capture micro-dissected corresponding primary tumor stroma compared to the matched normal lung. Six of these 14 genes could be induced by TGF-beta1 in NF. The results establish the prognostic impact of CAF-associated gene expression changes in NSCLC patients.
Prognostic gene-expression signature of carcinoma-associated fibroblasts in non-small cell lung cancer.
Sex, Age, Disease, Disease stage, Cell line
View SamplesThe tumor microenvironment strongly influences cancer development, progression and metastasis. The role of carcinoma-associated fibroblasts (CAFs) in these processes and their clinical impact has not been studied systematically in non-small cell lung carcinoma (NSCLC). We established primary cultures of CAFs and matched normal fibroblasts (NFs) from 15 resected NSCLC. We demonstrate that CAFs have greater ability than NFs to enhance the tumorigenicity of lung cancer cell lines. Microarray gene expression analysis of the 15 matched CAF and NF cell lines identified 46 differentially expressed genes, encoding for proteins that are significantly enriched for extracellular proteins regulated by the TGF-beta signaling pathway. We have identified a subset of 11 genes that formed a prognostic gene expression signature, which was validated in multiple independent NSCLC microarray datasets. Functional annotation using protein-protein interaction analyses of these and published cancer stroma-associated gene expression changes revealed prominent involvement of the focal adhesion and MAPK signalling pathways. Fourteen (30%) of the 46 genes also were differentially expressed in laser-capture micro-dissected corresponding primary tumor stroma compared to the matched normal lung. Six of these 14 genes could be induced by TGF-beta1 in NF. The results establish the prognostic impact of CAF-associated gene expression changes in NSCLC patients.
Prognostic gene-expression signature of carcinoma-associated fibroblasts in non-small cell lung cancer.
Sex, Age, Disease, Disease stage
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Transcriptional shift identifies a set of genes driving breast cancer chemoresistance.
Sex, Age, Specimen part, Treatment
View SamplesThe aim of this study was to compare the gene expression profile changes breast tumors after the treatment with Anthracyclines and Taxanes. To this end, an oligonucleotide microarray was performed (Affymetrixs HG-U133 Plus 2.0 array). This gene expression study was carried out on the biopsied tumor samples previous being treated with chemotherapy, and subsequently compared with themselves once treatment schedule ended. The post-chemotherapy biopsy was obtained from the surgical piece. The goal of this study was the finding of several genes related to apoptosis, proliferation, differentiation, survival and transformation-related genes and correlating their differences in expression with the degree of response to chemotherapy, determined by the Miller and Payne histological grading system.
Transcriptional shift identifies a set of genes driving breast cancer chemoresistance.
Sex, Age, Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Sequentially acting Sox transcription factors in neural lineage development.
Specimen part
View Samples