In this work, we showed that the re-expression of miR-26a in DU-145 prostate cancer cells restored the tumor suppressor activity of miR-26a. To discover the genes and pathways elicited by miR-26a re-expression, we used the miRNA pull out assay to capture and the Next Generation Sequencing to identify the miR-26a targets. Data showed that: i) miR-26a captured both non-coding and coding RNAs; ii) 46% of transcripts were putative miR-26a targets according to target prediction algorithms; iii) 21 pathways were significantly enriched and the “Pathway in Cancer” was among those comprising the largest number of genes, including BIRC5 that we experimentally validated. Accordingly, the detection of cell proliferation-related events showed that miR-26a exerted its tumor suppressor activity at several levels, by decreasing the survival, impairing the migration of tumor cells and by inducing both apoptosis and cell cycle block. In conclusion, we showed that the collection of miR-26a interacting transcripts (miR-26a/targetome) represented a fruitful platform to decipher the miR-26a-dependent gene expression networks. In perspective the availability of miRNA-specific and tumor-specific targetomes will allow the discovery of new druggable tumor genes and pathways. Overall design: The miRNA pull out assay was performed modifying the protocol described by Orom et al. {Methods 43, 162-165, doi:S1046-2023(07)00097-7}. DU-145 were seeded into the wells of a 6-well at the density of 1.5 x105. After 24 hours from seeding, cells were transfected using lipofectamine (Thermo Fisher) with 60nM of either miR-26a duplex (ds-miR-26aCT) or a mix of 3' biotin-tagged miR-26a 7tU (nucleotide 7 was a thiouridine) and miR-26a 17tU duplexes (ds-miR-26aBIO). The day after transfection, the cells were washed with PBS and irradiated with UV (365nm, 2J/cm2), using the Bio-Link crosslinking (BLX) (Ambrose Lourmat) with appropriate UV lamps, to induce cross-linking of tU nucleotides to RNA. Total RNA was extracted adding directly on adherent cells TRIzol reagent (Thermo Fisher) and following the instructions provided by the manufacturer. After DNAse treatment, 15 µg of RNA was incubated for 4 hrs at 4°C with 100 µl of streptavidin-conjugated beads (200 µl of Streptavidin Sepharose high performance, GE Healthcare) previously suspended in PO buffer (1M Tris pH8, 5M NaCl, 1M MgCl2, NP40 50 µl in 100 ml buffer). After 2 washes with PO buffer and 2 washes with DEPC-treated water, the RNA complexed with beads was recovered by adding 1 ml Trizol directly on the beads and then following the TRIzol RNA extraction protocol. We performed two biological replicates obtaining two miR-26aCT (control) and two miR-26aBIO (miR-26a) pull out samples. The RNA isolated after the miRNA pullout procedure from both miR-26aCT and miR-26aBIO samples was used for the construction of the cDNA libraries using the TruSeq Stranded Total RNA Sample Preparation kit (Illumina) according to the manufacturer's suggestions. cDNA libraries were sequenced by HiSeq2000 (Illumina) in single-reads mode (50bp) by IGA Technology Service, Udine, Italy, obtaining about 20 million of reads for each samples.
Discovering the miR-26a-5p Targetome in Prostate Cancer Cells.
Specimen part, Cell line, Subject
View SamplesProtein and mRNA levels for several selenoproteins, such as glutathione peroxidase-1 (Gpx1), are down-regulated dramatically by selenium (Se) deficiency.
Selenium toxicity but not deficient or super-nutritional selenium status vastly alters the transcriptome in rodents.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Liver X receptors inhibit proliferation of human colorectal cancer cells and growth of intestinal tumors in mice.
Age, Specimen part
View SamplesChanges in gene expression profile of intestinal (ILEUM) Tumors from APCmin/+/VP16LXRa vs APCmin/+/VP16. The hypothesis tested in the present study was that LXRa overexpression influence cancer growth modulating lipid metabolism in cancer cells. Results provide the information that LXRa induces genes encoding proteins able to regulate cholesterol efflux.
Liver X receptors inhibit proliferation of human colorectal cancer cells and growth of intestinal tumors in mice.
Age, Specimen part
View SamplesGenome-wide expression analysis in C. Elegans grown in axenic media with low to toxic selenium concentrations
Toxic-selenium and low-selenium transcriptomes in Caenorhabditis elegans: toxic selenium up-regulates oxidoreductase and down-regulates cuticle-associated genes.
No sample metadata fields
View SamplesPUF proteins have become a leading scaffold for designing RNA-binding proteins to contact and control RNAs at will. We analyze the effects of that reengineering across the transcriptome in vivo for the first time. We show, by HITS-CLIP and PAR-CLIP, that S. cerevisiae Puf2p, a non-canonical PUF protein, binds more than 1000 mRNA targets. Puf2p binds multiple UAAU elements, unlike canonical PUF proteins. We also perform CLIP-seq on truncations of Puf2p, showing that its prion domain is dispensable for WT binding. We design a modified Puf2p to bind UAAG rather than UAAU, which allows us to align the protein with the binding site. In vivo, the redesigned protein binds UAAG sites. Its altered specificity redistributes the protein away from 3'UTRs, such that the protein tracks with its sites and binds throughout the mRNA. We use RNA-seq to determine that R1 SNE Puf2p represses a novel RNA network. Overall design: CLIP-seq was performed in BY4742 S. cerevisiae grown in log phase, and using 2 replicates of TAP-tagged proteins. RNA-seq was performed to determine the regulatory effect of WT or mutant Puf2p, using 4 replicates of the control (no Puf2p), 3 of WT Puf2p and 4 of R1 SNE Puf2p.
Target selection by natural and redesigned PUF proteins.
Cell line, Subject
View SamplesHox genes are key regulators of development. In mammals, the study of these genes is greatly confounded by their large number, overlapping functions, and their interspersed shared enhancers. In this report, we describe a novel recombineering strategy that was used to introduce simultaneous frameshift mutations into the flanking Hoxa9, Hoxa10, and Hoxa11 genes, as well as their paralogs on the HoxD cluster. The resulting mutant mice displayed dramatic homeotic transformations of the reproductive tracts, with uterus anteriorized towards oviduct and the vas deferens anteriorized towards epididymis. The Hoxa9,10,11 mutant mice provided a sensitized genetic background that allowed the discovery of Hoxd9,10,11 reproductive tract patterning function. Both shared and distinct Hox functions were defined. The HoxD genes played a crucial role in the regulation of the uterine immune function. Non-coding nonpolyadenylated RNAs were among the key Hox targets. In addition, we observed a surprising anti-dogmatic posteriorization of the uterine epithelium.
Recombineering-based dissection of flanking and paralogous Hox gene functions in mouse reproductive tracts.
Sex, Specimen part
View SamplesHox genes are key regulators of development. In mammals, the study of these genes is greatly confounded by their large number, overlapping functions, and their interspersed shared enhancers. In this report, we describe a novel recombineering strategy that was used to introduce simultaneous frameshift mutations into the flanking Hoxa9, Hoxa10, and Hoxa11 genes, as well as their paralogs on the HoxD cluster. The resulting mutant mice displayed dramatic homeotic transformations of the reproductive tracts, with uterus anteriorized towards oviduct and the vas deferens anteriorized towards epididymis. The Hoxa9,10,11 mutant mice provided a sensitized genetic background that allowed the discovery of Hoxd9,10,11 reproductive tract patterning function. Both shared and distinct Hox functions were defined. The HoxD genes played a crucial role in the regulation of the uterine immune function. Non-coding nonpolyadenylated RNAs were among the key Hox targets. In addition we observed a surprising anti-dogmatic posteriorization of the uterine epithelium. Overall design: Reproductive tracts were collected from WT and Hox mutant mice (n=3/genotype) aged 3-7 months in order to characterize the molecular changes caused by mutation of Hoxa9,10,11 and Hoxd9,10,11. Female mice were staged and collected in diestrus.
Recombineering-based dissection of flanking and paralogous Hox gene functions in mouse reproductive tracts.
Specimen part, Subject
View SamplesThe source of aldosterone in 30 to 40 % of patients with primary hyperaldosteronism (PA) is unilateral aldosterone-producing adenoma (APA). The mechanisms causing elevated aldosterone production in APA are unknown. Herein, we examined expression of G-protein coupled receptors (GPCR) in APA and demonstrate that compared to normal adrenals there is a general elevation of certain GPCR in many APA and/or ectopic expression of GPCR in others. RNA samples from normal adrenals (n = 5), APAs (n = 10), and cortisol-producing adenomas (CPAs) (n=13) were used on 15 genomic expression arrays, each of which included 223 GPCR transcripts presented in at least one out of 15 of the independent microarrays. The array results were confirmed using real-time RT-PCR (qPCR). Four GPCR transcripts exhibited a statistically significant increase that was greater than 3-fold compared to normal adrenals, suggesting a general increase in expression compared to normal adrenal glands. Four GPCR transcripts exhibited a greater than 15-fold increase of expression in one or more of the APA samples compared to normal adrenals. qPCR analysis confirmed array data and found the receptors with the highest fold increase in APA expression to be luteinizing hormone receptor (LH-R), serotonin receptor 4 (HTR4), gonadotropin-releasing hormone receptor (GnRHR), glutamate receptor metabotropic 3 (GRM3), endothelin receptor type B-like protein (GPR37), and ACTH receptor (MC2R). There are also sporadic increased expressions of these genes in the CPAs. Together, these findings suggest a potential role of altered GPCR expression in many cases of PA and provide candidate GPCR for further study.
G-protein-coupled receptors in aldosterone-producing adenomas: a potential cause of hyperaldosteronism.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
ACTH is a potent regulator of gene expression in human adrenal cells.
No sample metadata fields
View Samples