We describe a new mutant allele of the ACTIN2 gene with enhanced actin dynamics, displaying a broad array of twisting and bending phenotypes that resemble BR-treated plants. Moreover, auxin transcriptional regulation is enhanced on the mutant background, supporting the idea that shaping actin filaments is sufficient to modulate BR-mediated auxin responsiveness. The actin cytoskeleton thus functions as a scaffold for integration of auxin and BR signaling pathways.
Role of actin cytoskeleton in brassinosteroid signaling and in its integration with the auxin response in plants.
No sample metadata fields
View Samplesdifferential display between WT and FLCN KO Overall design: Global gene expression pattern of ingWAT from wildtype and FLCN adipKO animals
The tumor suppressor FLCN mediates an alternate mTOR pathway to regulate browning of adipose tissue.
Specimen part, Subject
View SamplesStress constantly challenges plant adaptation to the environment. Of all stress types, arsenic was a major threat during the early evolution of plants. The most prevalent chemical form of arsenic is arsenate, whose similarity to phosphate renders it easily incorporated into cells via the phosphate transporters. Here we found that arsenate stress provokes a notable transposon burst in plants, in coordination with arsenate/phosphate transporter repression, which immediately restricts arsenate uptake. This repression was accompanied by delocalization of the phosphate transporter from the plasma membrane. When arsenate was removed, the system rapidly restored transcriptional expression and membrane localization of the transporter. We identify WRKY6 as an arsenate-responsive transcription factor that mediates arsenate/phosphate transporter gene expression and restricts arsenate-induced transposon activation. Plants therefore have a dual WRKY-dependent signaling mechanism that modulates arsenate uptake and transposon expression, providing a coordinated strategy for arsenate tolerance and transposon gene silencing.
WRKY6 transcription factor restricts arsenate uptake and transposon activation in Arabidopsis.
Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Stem cell-like transcriptional reprogramming mediates metastatic resistance to mTOR inhibition.
Specimen part, Cell line
View SamplesInhibitors of the mechanistic target of rapamycin (mTOR) are currently used to treat advanced metastatic breast cancer. However, whether an aggressive phenotype is sustained through adaptation or resistance to mTOR inhibition remains unknown. Here, complementary studies in human tumors, cancer models and cell lines reveal transcriptional reprogramming that supports metastasis in response to mTOR inhibition. This cancer feature is driven by EVI1 and SOX9. EVI1 functionally cooperates with and positively regulates SOX9, and promotes the transcriptional upregulation of key mTOR pathway components (REHB and RAPTOR) and of lung metastasis mediators (FSCN1 and SPARC). The expression of EVI1 and SOX9 is associated with stem cell-like and metastasis signatures, and their depletion impairs the metastatic potential of breast cancer cells. These results establish the mechanistic link between resistance to mTOR inhibition and cancer metastatic potential, thus enhancing our understanding of mTOR targeting failure.
Stem cell-like transcriptional reprogramming mediates metastatic resistance to mTOR inhibition.
Specimen part
View SamplesThis is a transcriptomics analysis contributing to a bigger project that tries to shed light on the role of type 2 diabetes mellitus (T2DM) as a risk factor for colon cancer (CC). Here we present a gene expression screening of paired tumor and normal colon mucosa samples in a cohort of 42 CC patients, 23 of them with T2DM. Using gene set enrichment, we identified an unexpected overlap of pathways over-represented in diabetics compared to non-diabetics, both in tumor and normal mucosa, including diabetes-related metabolic and signaling processes. An integration with other -omic studies suggests that in diabetics, the local micro-environment in normal colon mucosa may be a factor driving field cancerization which may promote carcinogenesis. Several of these pathways converged on the tumor initiation axis TEAD/YAP-TAZ. Cell culture studies confirmed that high glucose concentrations upregulate this pathway in non-tumor colon cells. In conclusion, diabetes is associated to deregulation of cancer-related processes in normal colon mucosa adjacent to tissue which has undergone a malignant transformation. These data support the existence of the field of cancerization paradigm in diabetes and set a new framework to study link between diabetes and cancer.
Molecular evidence of field cancerization initiated by diabetes in colon cancer patients.
Specimen part
View SamplesThis is a transcriptomics analysis contributing to a bigger project that tries to shed light on the role of type 2 diabetes mellitus (T2DM) as a risk factor for colon cancer (CC). Here we present a gene expression screening of 7 colon tumor xenograft samples, 2 with diabetic mice and 5 with normal blood glucose levels. For xenograft model details see: Prieto I, et al. (2017) Colon cancer modulation by a diabetic environment: A single institutional experience. PLoS One 12(3):e0172300
Molecular evidence of field cancerization initiated by diabetes in colon cancer patients.
Specimen part
View SamplesWe are studying signaling pathways and growth properties of cultured human ovarian cancer cells that are expressing the G protein-coupled receptor, luteinizing hormone receptor (LHR),particularly interested in the changes that occur when the receptor is activated by its cognate ligand, gonadotropin (LH). To investigate these questions, we have employed the SKOV3 ovarian cancer cell line that has been stably transfected with LHR, and can then test the response of these cells in culture following exposure to LH.
Regulation of gene expression in ovarian cancer cells by luteinizing hormone receptor expression and activation.
Cell line, Treatment, Time
View SamplesThe glycopeptide antibiotic vancomycin (VCM) represents one of the last lines of defense against methicillin-resistant Staphylococcus aureus infections. However, vancomycin is nephrotoxic, but the mechanism of toxicity is still unclear.
Gene expression analysis reveals new possible mechanisms of vancomycin-induced nephrotoxicity and identifies gene markers candidates.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Deregulated sex chromosome gene expression with male germ cell-specific loss of Dicer1.
Sex, Specimen part
View Samples