Foxp3+ T-regulatory (Treg) cells maintain immune homeostasis and limit autoimmunity, but can also curtail host responses to cancers. Tregs are therefore promising targets to enhance anti-tumor immunity. Histone/protein acetyltransferases (HATs) promote chromatin accessibility, gene transcription and the function of multiple transcription factors and non-histone proteins. We found that conditional deletion or pharmacologic inhibition of one specific HAT, p300, in Foxp3+ Tregs, increased TCR-induced apoptosis in Tregs, impaired Treg suppressive function and iTreg peripheral conversion, and limited tumor growth in immunocompetent, but not in immunodeficient, hosts. Our data demonstrate that p300 is important for Foxp3+ Treg function and homeostasis in vivo and in vitro, and identify a novel mechanism to diminish Treg function without overtly impairing effector Tcell responses or inducing autoimmunity. Collectively, these data suggest a new approach for cancer immunotherapy.
Inhibition of p300 impairs Foxp3⁺ T regulatory cell function and promotes antitumor immunity.
Specimen part
View SamplesDespite the benefits associated with healthy diets, data on the mechanisms by which these benefits are promoted are scarce. Our aim was to explore the global transcriptomic response of biological pathways related to cardiovascular disease associated with traditional Mediterranean diet (TMD) intervention. The PREDIMED study is a large on-going, parallel, multicentre, randomised, controlled trial aimed at assessing the TMD effect on primary cardiovascular prevention. High cardiovascular risk participants were recruited and assigned to one of the following interventions: 1) TMD plus virgin olive oil (VOO); 2) TMD plus mixed nuts; or 3) low-fat diet (control group). In a sub sample of 30 volunteers of the PREDIMED- Barcelona Sur Centre, gene expression changes in peripheral mononuclear cells, after 3 months of intervention, were assessed by microarray analysis.
In vivo transcriptomic profile after a Mediterranean diet in high-cardiovascular risk patients: a randomized controlled trial.
Time
View SamplesThe goal of this study was to define relationships between peripheral blood miRNAs and mRNAs of women undergoing idiopathic preterm labor (PTL) and compare network level changes to control women that deliver at term.Using RNA Sequencing we have performed global miRNA and mRNA profiling in both monocytes and whole blood leukocytes of women who underwent PTL (N=15) matched to non-pathological controls (N=30) as a part of the Ontario Birth Study cohort. We have identified differentially expressed miRNAs, mRNAs and pathways associated with PTL. Intriguingly, we found perturbations in many cellular signaling pathways, particularly in interleukin signaling. We also predicted mRNA targets for specific miRNAs and used these predictions to build putative miRNA-mRNA networks. We identified 6 miRNAs significantly associated with PTL whose expression is negatively correlated with expression of 14 predicted mRNA targets that are also significantly associated with PTL. Overall design: miRNA and mRNA were quantified from whole blood and monocytes of women undergoing spontaneous preterm labor compared to nonlabor controls matched on gestational age
Comparative analysis of gene expression in maternal peripheral blood and monocytes during spontaneous preterm labor.
Subject
View SamplesMicroarray expression profiling was used to identify genes expressed misexpressed in wild-type Arabidopsis seedlings treated with 5-aza-2 deoxyctidine (5AC) or trichostatin A (TSA), and in decrease in dna methylation1 (ddm1) mutant seedlings.
Changes in global gene expression in response to chemical and genetic perturbation of chromatin structure.
Specimen part
View SamplesBiological systems display extraordinary robustness. Robustness of transcriptional enhancers results mainly from clusters of binding sites for the same transcription factor, and it is not clear how robust enhancers can evolve loss of expression through point mutations. Here, we report the high-resolution functional dissection of a robust enhancer of the shavenbaby gene that has contributed to morphological evolution. We found that robustness is encoded by many binding sites for the transcriptional activator Arrowhead and that, during evolution, some of these activator sites were lost, weakening enhancer activity. Complete silencing of enhancer function, however, required evolution of a binding site for the spatially restricted potent repressor Abrupt. These findings illustrate that recruitment of repressor binding sites can overcome enhancer robustness and may minimize pleiotropic consequences of enhancer evolution. Recruitment of repression may be a general mode of evolution to break robust regulatory linkages. Overall design: 8 samples are analyzed: background GFP- and target GFP+ cells from four independent sortings.
Evolved Repression Overcomes Enhancer Robustness.
Specimen part, Subject
View SamplesPdgfra-expressing (Pdgfra+) cells have been implicated as progenitors in many mesenchymal tissues. To further characterize Pdgfra+ cells during alveologensis, we performed single-cell RNA sequencing (scRNA-Seq) analysis using fluorescence-activated cell sorting (FACS) sorted GFP+ cells from Pdgfra-GFP lungs at P7 and P15. Overall design: We perfomed 10X genomics single-cell RNA-seq of Pdgfra-GFP+ cells at P7 and P15
<i>Pdgfra</i> marks a cellular lineage with distinct contributions to myofibroblasts in lung maturation and injury response.
Specimen part, Subject
View SamplesBackground: Although several studies link high levels of IL-6 and soluble IL-6 receptor (sIL-6R) with asthma severity and decreased lung function, the role of IL-6 trans-signaling (IL-6TS) in asthma is unclear. Objective: To explore the association between epithelial IL-6TS pathway activation and molecular and clinical phenotypes in asthma. Methods: Primary human bronchial epithelial cell (HBEC) air-liquid interface (ALI) cultures were stimulated with IL-6 and sIL-6R to establish an IL-6TS gene signature. Two separate RNA sequencing (RNA-seq) studies were performed: The “IL-6 vs T2 study” compared gene expression after stimulation with control medium, IL-6, IL-6/sIL-6R and IL-4/IL-13, while the “JAK1-inhibition study” addressed the effect of JAK1 inhibition on IL-6TS induced gene expression. The IL-6TS gene signature was used to stratify lung epithelial transcriptomic data obtained from asthmatics (n=103) in the U-BIOPRED cohorts by hierarchical clustering. Molecular phenotyping was based on the transcriptional profiling of epithelial brushings, pathway analysis and immunohistochemistry analysis of bronchial biopsies. Results: Activation of IL-6TS in HBEC ALI cultures reduced epithelial barrier function and induced a specific epithelial gene signature enriched in airway remodeling genes. The IL-6TS signature identified a subset (n=17) of IL-6TS High asthma patients with increased epithelial expression of IL-6TS inducible genes in absence of increased systemic levels of IL-6 and sIL-6R. The IL-6TS High subset had an increased exacerbation frequency (p=0.028), blood (>300/µl; p=0.0028) and sputum (>20%; p=0.007) eosinophilia, and submucosal infiltration of CD4 T cells, CD8 T cells (p<0.001) and macrophages (p=0.001). In bronchial brushings, TLR pathway genes were up-regulated while the expression of epithelial tight junction genes was reduced (all with q<0.05). Sputum sIL-6R levels correlated with sputum markers of remodeling and innate immune activation, in particular YKL-40, MMP3, IL-8 and IL-1ß (all with q<0.001). Conclusions: Local lung epithelial IL-6TS activation in absence of type 2 airway inflammation defines a novel subset of asthmatics and may drive airway inflammation and epithelial dysfunction in these patients. Overall design: Primary human bronchial epithelial cells grown and differentiated on air-liquid interface were stimulated basolaterally for 24h with cytokines corresponding to IL-6TS (IL-6 + sIL-6R), IL-6 alone, a Type 2 immune response (IL-4 + IL-13) or media alone as non-stimulated control. Each stimulation condition was done in triplicates. Cells were lysed, the RNA isolated and converted into libraries then used for next generation sequencing in order to identify genes that were up- or downregulated in response to the different stimulations.
Epithelial IL-6 trans-signaling defines a new asthma phenotype with increased airway inflammation.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Divergent whole-genome methylation maps of human and chimpanzee brains reveal epigenetic basis of human regulatory evolution.
No sample metadata fields
View SamplesWe identified human-specific gene expression patterns in the brain by comparing expression with chimpanzee and rhesus macaque
Divergent whole-genome methylation maps of human and chimpanzee brains reveal epigenetic basis of human regulatory evolution.
No sample metadata fields
View SamplesGlucose is the most important metabolic substrate of the retina and maintenance of nor-moglycemia is an essential challenge for diabetic patients. Glycemic excursions could lead to cardiovascular disease, nephropathy, neuropathy and retinopathy. We recently showed that hy-poglycemia induced retinal cell death in mouse via caspase 3 activation and glutathione (GSH) decrease. Ex vivo experiments in 661W photoreceptor cells confirmed the low-glucose induction of death via superoxide production and activation of caspase 3, which was concomitant with a decrease of GSH content. We evaluate herein retinal gene expression 4 h and 48 h after insulin-induced hypoglycemia. Microarray analysis demonstrated clusters of genes whose expression is modified by hypoglycemia and we discuss the potential implication of those genes in retinal cell death. In addition, we highlight, by gene set enrichment analysis, three important pathways, including KEGG lysosomes, KEGG GSH metabolism and REACTOME apoptosis pathways. We tested the effect of recurrent hypoglycemia (three successive 5h periods of hypoglycemia separated by 48 h recovery) on retinal cell death. Interestingly, exposure to multiple hypoglycemic events prevents retinal cell death and GSH decrease, or adapts the retina to external stress by restoring GSH level comparable to control situation. We hypothesize that scavenger GSH is a key compound in this apoptotic process, and maintaining normal GSH level, as well as a strict glycemic control, may represent a therapeutic challenge in order to avoid side effects of diabetes, especially diabetic retinopathy.
Biological Characterization of Gene Response to Insulin-Induced Hypoglycemia in Mouse Retina.
Sex, Age, Specimen part
View Samples