Based on preliminary data demonstrating that macrophages are critical regulators of Helicobacter pylori colonization and gastric pathology in mice, we sought to investigate how macrophages may serve as bacterial reservoirs of intracellular H. pylori. Overall design: BMDM were isolated from WT and PPARg-/- mice and cultured with M-CSF for 7 days to promote macrophage differentiation. Fully differentiation macrophages were challenged with H. pylori strains SS1 at an MOI of 10 for 15 minutes. Extracellular bacteria was then eliminated by gentamycin treatment. Cells were collected at 0, 60, 120, 240, 360 and 720 minutes post gentamycin treatment to ascertain whole transcriptome differential gene expression during infection.
Identification of new regulatory genes through expression pattern analysis of a global RNA-seq dataset from a Helicobacter pylori co-culture system.
No sample metadata fields
View SamplesWe used microarrays to detail the global program of gene expression in response to expression of either mutant (C96Y) or wild-type human proinsulin and identified distinct classes of up-regulated genes. Results provides insight into the molecular mechanisms underlying a form of neonatal diabetes.
Genetic complexity in a Drosophila model of diabetes-associated misfolded human proinsulin.
Sex, Specimen part
View SamplesThe aim of the dataset was to study the effect of music exposure on human blood transcriptome.
The effect of listening to music on human transcriptome.
Specimen part, Treatment, Race
View SamplesDevelopment requires the cooperation of tissue-specific and ubiquitously expressed transcription factors, such as Sp-family members. However, the molecular details of how ubiquitous factors participate in developmental processes are still unclear. We previously showed that during the differentiation of embryonic stem cells lacking Sp1 DNA binding activity (Sp1deltaDBD/deltaDBD cells), early blood progenitors are formed. However, gene expression during differentiation becomes progressively deregulated and terminal differentiation is severely compromised. Here we studied the cooperation of Sp1 and its closest paralogue Sp3 in hematopoietic development and demonstrate that Sp1 and Sp3 binding sites largely overlap. Sp3 cooperates with Sp1deltaDBD/deltaDBD but is unable to support hematopoiesis in the complete absence of Sp1. Using single cell gene expression analysis, we show that the lack of Sp1 DNA binding leads to a distortion of cell fate decision timing, indicating that stable chromatin bi nding of Sp1 is required to maintain robust differentiation trajectories. Overall design: RNA-Seq in ESC, Flk, HE1, HE2 and progenitor cells with WT, Sp1deltaDBD or Sp3KO
Robust hematopoietic specification requires the ubiquitous Sp1 and Sp3 transcription factors.
Specimen part, Cell line, Subject
View SamplesDevelopment requires the cooperation of tissue-specifically and ubiquitously expressed transcription factors, such as Sp-family members. However, the molecular details of how ubiquitous factors participate in developmental processes are still unclear. We previously showed that during the differentiation of embryonic stem cells lacking Sp1 DNA binding activity (Sp1DDBD/DDBD cells), early blood progenitors are formed. However, gene expression during differentiation becomes progressively deregulated and terminal differentiation is blocked. Here we studied the cooperation of Sp1 and its homologue Sp3 in hematopoietic development and demonstrate that Sp1 and Sp3 binding sites largely overlap. Sp3 cooperates with Sp1DDBD/DDBD cells but is unable to support hematopoiesis in the complete absence of Sp1. Using single cell gene expression analysis, we show that the lack of Sp1 DNA binding leads to a distortion of cell fate decision timing, indicating that stable chromatin binding of Sp1 is required to maintain robust differentiation trajectories. Overall design: Chromium 10X - Single-cell RNA-seq of Sp1 wild-type and Sp1 DNA binding domain mutant cells
Robust hematopoietic specification requires the ubiquitous Sp1 and Sp3 transcription factors.
Specimen part, Subject
View SamplesCD70TG mice are a model for sterile chronic immune activation and develop Anemia of Inflammation, which is dependent on the production of Ifng by effector CD4 and CD8 T cells.
Chronic IFN-γ production in mice induces anemia by reducing erythrocyte life span and inhibiting erythropoiesis through an IRF-1/PU.1 axis.
Specimen part
View SamplesMice lacking the zinc finger transcription factor Specificity protein 3 (Sp3) die prenatally in the C57Bl/6 background. To elucidate the cause of mortality we analyzed the potential role of Sp3 in embryonic heart development. Sp3 null hearts display defective looping at E10.5, and at E14.5 the Sp3 null mutants have developed a range of severe cardiac malformations. In an attempt to position Sp3 in the cardiac developmental hierarchy, we analysed the expression patterns of >15 marker genes in Sp3 null hearts. Expression of Cardiac ankyrin repeat protein (Carp) was downregulated prematurely after E12.5, while expression of the other marker genes was not affected. ChIP analysis revealed that Sp3 is bound to the Carp promoter region in vivo. Microarray analysis indicates that small molecule metabolism and cell-cell interactions are the most significantly affected biological processes in E12.5 Sp3 null myocardium. Since the epicardium showed distension from the myocardium, we studied expression of Wt1, a marker for epicardial cells. Wt1 expression was diminished in epicardium-derived cells in the myocardium of Sp3 null hearts. We conclude that Sp3 is required for normal cardiac development, and suggest that it has a crucial role in myocardial differentiation. (
Transcription factor Sp3 knockout mice display serious cardiac malformations.
No sample metadata fields
View SamplesAdipose tissue-derived stromal stem cells (ASCs) represent a promising regenerative resource for soft tissue reconstruction. To understand the changes in cell function during the transition of ASCs into fully mature fat cells, we compared the transcriptome profiles of cultured undifferentiated human primary ASCs under conditions leading to acquisition of a mature adipocyte phenotype by microarray analysis.
Expression analysis of human adipose-derived stem cells during in vitro differentiation to an adipocyte lineage.
Sex, Specimen part
View SamplesThe mammalian target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth that is commonly deregulated in human diseases. Here we find that mTORC1 controls a transcriptional program encoding amino acid transporters and metabolic enzymes through a mechanism also used to regulate protein synthesis. Bioinformatic analysis of mTORC1-responsive mRNAs identified a promoter element recognized by activating transcription factor 4 (ATF4), a key effector of the integrated stress response. ATF4 translation is normally induced by phosphorylation of eukaryotic initiation factor 2 alpha (eIF2a) through a mechanism that requires upstream open reading frames (uORFs) in the ATF4 5'' UTR. mTORC1 also controls ATF4 translation through uORFs, but independent of changes in eIF2a phosphorylation. mTORC1 instead employs the 4E-binding protein (4E-BP) family of translation repressors. These results link mTORC1-regulated demand for protein synthesis with an ATF4-regulated transcriptional program that controls the supply of amino acids to the translation machinery. Overall design: RNA-seq analysis of wild-type and ATF4-null HEK293T cells treated with Torin 1 or tunicamycin for 6 h, and ribosome profiling analysis of HEK293T cells treated with Torin 1 for 24 h.
mTORC1 Balances Cellular Amino Acid Supply with Demand for Protein Synthesis through Post-transcriptional Control of ATF4.
Subject
View SamplesSurprisingly few pathways signal between cells, raising questions about mechanisms for tissue-specific responses. In particular, Wnt ligands signal in many mammalian tissues, including the intestinal epithelium, where constitutive signaling causes cancer. Genome-wide analysis of DNA cis-regulatory regions bound by the intestine-restricted transcription factor CDX2 in colonic cells uncovered highly significant over-representation of sequences that bind TCF4, a transcriptional effector of intestinal Wnt signaling. Chromatin immunoprecipitation confirmed TCF4 occupancy at most such sites and co-occupancy of CDX2 and TCF4 across short distances. A region spanning the single nucleotide polymorphism rs6983267, which lies within a MYC enhancer and confers colorectal cancer risk in humans, represented one of many co-occupied sites. Co-occupancy correlated with intestine-specific gene expression and CDX2 loss reduced TCF4 binding.These results implicate CDX2 in directing TCF4 binding in intestinal cells. Co-occupancy of regulatory regions by signal-effector and tissue-restricted transcription factors may represent a general mechanism for ubiquitous signaling pathways to achieve tissue-specific outcomes.
TCF4 and CDX2, major transcription factors for intestinal function, converge on the same cis-regulatory regions.
Specimen part, Cell line
View Samples