Hairy cell leukemia (HCL) shows unique clinico-pathological and biological features. HCL responds well to purine analogues but relapses are frequent and novel therapies are required. BRAF-V600E is the key driver mutation in HCL and distinguishes it from other B-cell lymphomas, including HCL-like leukemias/lymphomas (HCL-variant and splenic marginal zone lymphoma). The kinase-activating BRAF-V600E mutation also represents an ideal therapeutic target in HCL. Here, we investigated the biological and therapeutic importance of the activated BRAF-MEK-ERK pathway in HCL by exposing in vitro primary leukemic cells purified from 26 patients to clinically available BRAF (Vemurafenib; Dabrafenib) or MEK (Trametinib) inhibitors. Results were validated in vivo in samples from Vemurafenib-treated HCL patients within a phase-2 clinical trial. BRAF and MEK inhibitors caused, specifically in HCL (but not HCL-like) cells, marked MEK/ERK dephosphorylation, silencing of the BRAF-MEK-ERK pathway transcriptional output, loss of the HCL-specific gene expression signature, downregulation of the HCL markers CD25, TRAP and cyclin-D1, smoothening of leukemic cells' hairy surface, and, eventually, apoptosis. Apoptosis was partially blunted by co-culture with bone marrow stromal cells antagonizing MEK-ERK dephosphorylation. This protective effect could be counteracted by combined BRAF and MEK inhibition. Our results strongly support and inform the clinical use of BRAF and MEK inhibitors in HCL.
BRAF inhibitors reverse the unique molecular signature and phenotype of hairy cell leukemia and exert potent antileukemic activity.
Specimen part, Treatment, Subject
View SamplesIn order to define the targets of two miRNA overexpressed in NK cells in CFS/ME paitents, miRNA precursors for hsa-miR-99b and hsa-miR-330-3p were transfected in to buffy coat derived Natural Killer cells isolated by negative magnetic selection.
MicroRNAs hsa-miR-99b, hsa-miR-330, hsa-miR-126 and hsa-miR-30c: Potential Diagnostic Biomarkers in Natural Killer (NK) Cells of Patients with Chronic Fatigue Syndrome (CFS)/ Myalgic Encephalomyelitis (ME).
Specimen part, Disease, Disease stage
View SamplesMultiple myeloma is largely incurable, despite development of therapies that target myeloma cell-intrinsic pathways. Disease relapse is thought to originate from dormant myeloma cells, localized in specialized niches, which resist therapy and re-populate the tumor. However, little is known about the niche, and how it exerts cell-extrinsic control over myeloma cell dormancy and re-activation. In this study we track individual myeloma cells by intravital imaging as they colonize the endosteal niche, enter a dormant state and subsequently become activated to form colonies. We demonstrate that dormancy is a reversible state which is switched on by engagement with bone lining cells or osteoblasts, and switched off by osteoclasts remodeling the endosteal niche. Dormant myeloma cells are resistant to chemotherapy targeting dividing cells. The demonstration that the endosteal niche is pivotal in controlling myeloma cell dormancy highlights the potential for targeting cell-extrinsic mechanisms to overcome cell-intrinsic drug resistance and prevent disease relapse.
Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
PPARG binding landscapes in macrophages suggest a genome-wide contribution of PU.1 to divergent PPARG binding in human and mouse.
Specimen part, Cell line, Treatment
View SamplesGenome-wide comparisons of transcription factor binding sites in different species allow for a direct evaluation of the evolutionary constraints that shape transcription factor binding landscapes. To gain insights into the evolution of the PPARg-dependent transcriptional network we obtained binding data for PPARg, RXR and PU.1 in human macrophages and compared the profiles to matching data from mouse macrophages. We found that PPARg binding was highly divergent and only 5% of the PPARg bound regions were occupied in both species. Despite the low conservation of PPARg binding sites, conserved PPARg target genes contribute more than 30% to the functional target genes identified in human macrophages. In addition conserved target genes are strongly enriched for lipid metabolic functions. We detected the lineage-specification factor PU.1 at the majority of human PPARg binding sites. This confirmed the juxtaposed binding configuration found in mouse macrophages and demonstrated the preservation of tissue-specific adjacent PPARg-Pu.1 binding in the absence of individual binding site conservation. Finally, based on this of PPARg and PU.1 binding between human and mouse we suggest a mechanism by which PU.1 facilitates PPARg binding site turnover in macrophages.
PPARG binding landscapes in macrophages suggest a genome-wide contribution of PU.1 to divergent PPARG binding in human and mouse.
Cell line, Treatment
View SamplesSir2 is an NAD+-dependent histone deacetylase, and is the founding member of a large, phylogentically conserved, family of such deacetylases called the Sirtuins. The budding yeast, Saccharomyces cerevisiae, harbors 4 paralogs of Sir2, known as Hst1, Hst2, Hst3, and Hst4. Reducing the intracellular NAD+ concentration is inhibitory for the Sirtuins, and raising the intracellular nicotinamide (NAM) concentration is inhibitory. Microarray gene expression analysis was used to identify novel classes of yeast genes whose expression is altered when either NAD+ concentration is reduced or NAM is elevated. A subset of genes involved in thiamine biosynthesis was identified as being upregulated when Sir2 or Hst1 was inactivated.
Thiamine biosynthesis in Saccharomyces cerevisiae is regulated by the NAD+-dependent histone deacetylase Hst1.
No sample metadata fields
View SamplesTo test the effect of silencing Rae1 on expression on RNA polymerase II transcripts, host mRNAs were analysed by cDNA microarrays. We hypothesized that if silencing Rae1 expression increases cellular resistance to inhibition of transcription in VSV infected cells, mRNA characteristic of host antiviral response would be increased than compared to cells transfected with control siRNA.
Complexes of vesicular stomatitis virus matrix protein with host Rae1 and Nup98 involved in inhibition of host transcription.
Cell line
View SamplesNoncoding variants play a central role in the genetics of complex traits, but we still lack a full description of the main molecular pathways through which they act. Here we used molecular data to quantify the contribution of cis-acting genetic effects at each major stage of gene regulation from chromatin to proteins, within a population sample of Yoruba lymphoblastoid cell lines (LCLs). We performed 4sU metabolic labeled transcripts in 65 YRI LCLs to identify genetic variants that affect transcription rates. As expected, we found an important contribution of genetic variation via chromatin, contributing ~65% of eQTLs (expression Quantitative Trait Loci). The remaining eQTLs, which are not asso- ciated with chromatin-level variation, are highly enriched in transcribed regions, and hence may affect expression through co- or post-transcriptional processes. Overall design: International HapMap lymphoblastoid cell lines (LCLs) derived from YRI (Yoruba in Ibadan, Nigeria); We adapted the 4sU labelling method from (PMID 21516085). Briefly, cell cultures were grown to log phase in volumes sufficient to yield about 300 ng of 4sU-labeled RNA. Cells were incubated with 4sU for the required length of time (0, 30, or 60 minutes), then washed, pelleted, and frozen. Total RNA was extracted, and 4sU-labeled RNA was separated from total RNA using a bead-based biotin-streptavidin purification protocol. We sequenced metabolic labeled transcripts in 65 YRI LCLs 30 minutes and 60 minutes after incubation.
RNA splicing is a primary link between genetic variation and disease.
No sample metadata fields
View SamplesDuring S-phase of the cell cycle production of the core histone proteins is precisely balanced with DNA replication. Metazoan mRNAs encoding replication dependent (RD) histones lack polyA tail normally formed by 3' end cleavage and coupled polyadenylation of the pre-mRNA. Instead, they undergoes to endonucleolytic cleavage on the 3' side of an RNA hairpin (stem loop) producing mRNA with a 3´-stem loop (SL), which is exported from the nucleus for use in translation. The same endonuclease that is involved in normal protein-coding pre-mRNA cleavage, i.e. cleavage and poyladenylation specificity factor 73 (CPSF73), is proposed to catalyse RD pre-histone mRNA cleavage. Additional factors specific to RD pre-histone mRNA processing, including stem loop binding protein (SLBP) and the U7 small nuclear ribonucleoprotein (U7snRNP) that binds to a histone downstream element (HDE) are thought to be involved in CPSF73 targeting to RD pre-histone mRNA. We report that a different histone specific endonuclease (HSE), which like CPSF73 is a metallo ß lactamase (MBL) fold protein, is specific for RD pre-histone mRNA cleavage10,11. Crystallographic and biochemical studies reveal HSE has a di-zinc ion containing active site related to that of CPSF73, but which has distinct overall fold. Notably HSE depletion from cells leads to the production of unprocessed RD pre-histone mRNA due to inefficient 3' end processing. The consequent depletion of core histone proteins correlates with a cell cycle defect due to a delay in entering/progressing through S-phase. HSE thus may represent a new type of S-phase specific cancer target. Overall design: Examination of chromatin mRNA profiles in HeLa cells after depletion of HSE or CPSF73 by siRNA treatment.
Biosynthesis of histone messenger RNA employs a specific 3' end endonuclease.
Specimen part, Subject
View SamplesThe effects of LXR stimulation by GW3965 treatment on global mRNA and miRNA expression in primary human in vitro differentiated adipocytes was investigated using microarray profiling.
LXR is a negative regulator of glucose uptake in human adipocytes.
Sex, Age, Specimen part, Subject
View Samples