Purpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study are to compare NGS-derived brain transcriptome profiling (RNA-seq) in neuropathic region specific Gaucher mouse brain compared with WT and Isofagamine treated mice of the same age and background and secondly to identify the DEmiRNA associated with the DEmRNA before and after treatment This will give us some insights to see if miRNA is also involved in the the regulation of the expression of the genes involved in the disease process before and after treatment. Methods: 42-45 days old 4L;C*, wild-type (WT) and Isofagamine treated 4L;C* mouse brain were generated by deep sequencing, in triplicate, using IlluminaHiseq. The sequence reads that passed quality filters were analyzed at the gene level with two methods: Burrows–Wheeler Aligner (BWA) followed and TopHat followed by DESeq. qRT–PCR validation was performed using TaqMan and SYBR Green assays Overall design: Regional brain mRNA profiles of ~42 -days old wild type (WT) and 4L;C* an d Isofagamine treated mice were generated by deep sequencing, in triplicate, using IlluminaHi Seq.
Signatures of post-zygotic structural genetic aberrations in the cells of histologically normal breast tissue that can predispose to sporadic breast cancer.
No sample metadata fields
View SamplesmRNA expression data were collected from patients with brain tumor to improve diagnostic of gliomas on molecular level.
Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain.
No sample metadata fields
View SamplesThe Epidermal Growth Factor Receptor (EGFR)/ligand system is centrally involved in multiple homeostatic functions of the epithelia. Epithelial cells are the primary targets of humanized antibodies and small molecule inhibitors against this system, whereby the constellation of skin-specific side effects of these drugs stems from a profound disturbance of keratinocyte biology. So far, the molecular mechanisms underlying these toxic events have been investigated only broadly. Here we show that keratinocyte response to anti-EGFR drugs comprises the development of a type 1 interferon (IFN) molecular signature including enhanced expression of IFN-kappa. Mechanistically, nuclear accumulation of IRF1 precedes this signature as well as the enhanced expression of a chemokine cluster we previously identified as a relevant pro-inflammatory component of EGFR inhibition. In fact, either silencing of IRF1 transcript expression, or antibody-mediated blockade of type 1 IFN receptor function and consequent abrogation of STAT1 activation, leads to impairment of this gene transcription profile. High levels of IRF1 and IFN-kappa can be clearly observed in the early skin lesions of patients treated with cetuximab. Type 1 IFN signaling could be crucially implicated in the triggering of the inflammatory mechanisms active in the skin of patients under treatment with anti-EGFR drugs.
Epidermal growth factor receptor inhibitors trigger a type I interferon response in human skin.
Specimen part, Cell line
View SamplesThe relationships between cancer cells and the microenvironment play a critical role in cancer growth and development. The bone stroma consists of mesenchymal stem cells (MSCs) and mature osteoblasts that promote cancer growth. Yet it is not completely understood what are the molecular processes guiding cancer cells progression to the bone. In this study, a co-culture assay and subsequent gene profiling arrays were used to compare the gene expression profile of a pre-osteoblastic cell line (MBA-15) with that of a mammary adenocarcinoma (DA3) cells. Following co-culture, cells were separated by magnetic beads based on the expression of CD326 antigen. RNA was purified and hybridized on gene expression array. The gene expression pattern changes were followed by qRT-PCR. We demonstrate that co-cultured DA3 cells express elevated levels of genes that regulate growth and responses to both hormonal stimulus and wounding, as well as reduced expression of genes related to lipid metabolism. Also, co-cultured pre-osteoblastic cells showed reduced expression of cell-junction genes. The study presents a simplified model system, composed of pre-osteoblastic and mammary cancer cells, that potentially mimics the molecular interactions in the tumor microenvironment which contribute to tumor-progression.
Molecular profiling of functional interactions between pre-osteoblastic and breast carcinoma cells.
Specimen part, Cell line
View SamplesTGFBR1*6A is a common hypomorphic variant of the type 1 Transforming Growth Factor Beta Receptor (TGFBR1), which has been associated with increased cancer risk in some studies. Although TGFBR1*6A is capable of switching TGF- growth inhibitory signals into growth stimulatory signals when stably transfected into MCF-7 breast cancer cells, TGFBR1*6A biological effects are largely unknown. To broadly explore TGFBR1*6A potential oncogenic properties, we assessed its impact on the migration and invasion of MCF-7 cells. We found that TGFBR1*6A significantly enhances MCF-7 cell migration and invasion in a TGF- signaling independent manner. We set up and performed a gene array using the conditions mimicking the cell migration experiments to determine which genes in the migratory pathway were differentially regulated between the MCF-7*6A cells and the MCF-7*9A (wild type transfected) cells. The gene array identified two downregulated genes in *6A compared to *9A that are involved in cell migration and invasion: ARHGAP5, encoding ARHGAP5, and FN1, encoding fibronectin-1 (FN1). We were subsequently able to use this information in further studies in the lab.
TGFBR1*6A enhances the migration and invasion of MCF-7 breast cancer cells through RhoA activation.
No sample metadata fields
View SamplesLipid metabolic disarray in young and adult mice offspring's liver is induced by saturated fatty acids (SFA) but prevented by alpha linolenic acid (ALA, 18:3 3) in the maternal diet during pregnancy and lactation. The aim of the present study was to analyse the impact of maternal dietary ALA on the liver gene expression in the new-born offspring in comparison to a SFA diet. Methods: C57Bl6/J dams were fed with diets normal in calories but rich in ALA or SFA before mating and during pregnancy. Pups were sacrificed at birth and liver parameters were assessed. Gene expression was characterized by microarray analysis and validated by real time qPCR. Results: ALA compared to SFA in maternal diets during pregnancy, increased polyunsaturated fatty acids while differentially modified fatty acid desaturase activities in offspring liver. Overall, 474 and 662 genes from born pups liver, were differentially regulated by ALA and SFA compared to control diet (p<0.05; Fold change 2), respectively. Notably, Per3 was up-regulated by ALA whereas down-regulated by SFA, compared to control diet. Conclusions: ALA and SFA enriched diets differentially affect gene expression pattern in the offsprings liver. ALA in particular, upregulates genes associated to low adiposity.
Maternal Diet Enriched with α-Linolenic or Saturated Fatty Acids Differentially Regulates Gene Expression in the Liver of Mouse Offspring.
Specimen part, Disease, Treatment
View SamplesThe comparison of trancriptomes was part of the study by Pasternak et al. The goal was to check if BTG4 regulates mRNA polyadenylation during mouse oocyte meiosis. To test this we compared the abundancies of the polyadenylated trancripts in control and Btg4-depleted oocytes. Overall design: 3 samples of 50 oocytes were collected for both groups
The BTG4 and CAF1 complex prevents the spontaneous activation of eggs by deadenylating maternal mRNAs.
Cell line, Subject
View SamplesDuring development, a polarized sheet of epidermal cells undergoes stratification and differentiation to produce the skin barrier. Through mechanisms poorly understood, the process involves adhesion and Notch signaling. To elucidate how epidermal embryogenesis is governed, we conditionally targeted transcription factor serum response factor (SRF), which has been shown to be essential for proper epidermal differentiation in vitro and in vivo. Seeking mechanism, we identified actomyosin-related genes as well-known SRF targets downregulated shortly after ablation. We show that this results in a diminished cortical actomyosin network which fails to regulate the transition of cells from the basal proliferative layer to the suprabasal differentiating layer resulting in an inability of cells to properly execute stratification and differentiation.
Developmental roles for Srf, cortical cytoskeleton and cell shape in epidermal spindle orientation.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Temporal- and strain-specific host microRNA molecular signatures associated with swine-origin H1N1 and avian-origin H7N7 influenza A virus infection.
Cell line
View SamplesFADD-IEC KO and CASP8 IEC-KO mice spontaneously develop chronic colitis charcterized by inflammatory gene expression. We characterized the role of MLKL, RIPK3, ZBP1, in the upregulation of inlflammatory genes in these mice.
FADD and Caspase-8 Regulate Gut Homeostasis and Inflammation by Controlling MLKL- and GSDMD-Mediated Death of Intestinal Epithelial Cells.
No sample metadata fields
View Samples