Identification of intrathymic Eomes+ natural Th1 cells creates a novel idea that there is more than one way for the generation of innate CD4 T cells. To more deeply characterize this type of innate T cells, we compared the gene expression profile between nTh1 cells generated in CIITAtg mice and classic Th1 cells differentiated from naive CD4 T cells in Th1-polarizing condition.
Thymic low affinity/avidity interaction selects natural Th1 cells.
Age, Specimen part
View SamplesIt is unknown if gene expression profiles from primary RCC tumors differ from patient-matched metastatic tumors. Thus, we sought to identify differentially expressed genes between patient-matched primary and metastatic RCC tumors in order to understand the molecular mechanisms underlying the development of RCC metastases.
Differential gene expression profiling of matched primary renal cell carcinoma and metastases reveals upregulation of extracellular matrix genes.
Specimen part, Subject
View SamplesTCPOBOP (1,4-Bis [2-(3,5-Dichloropyridyloxy)] benzene) is a constitutive androstane receptor (CAR) agonist that induces robust hepatocyte proliferation and hepatomegaly without any liver injury or tissue loss. TCPOBOP-induced direct hyperplasia has been considered to be CAR-dependent with no evidence of involvement of cytokines or growth factor signaling. Receptor tyrosine kinases (RTKs), MET and EGFR, are known to play a critical role in liver regeneration after partial hepatectomy, but their role in TCPOBOP-induced direct hyperplasia, not yet explored, is investigated in the current study. Disruption of the RTK-mediated signaling was achieved utilizing MET KO mice along with Canertinib treatment for EGFR inhibition. Combined elimination of MET and EGFR signaling [MET KO + EGFRi], but not individual disruption, dramatically reduced TCPOBOP-induced hepatomegaly and hepatocyte proliferation. TCPOBOP-driven CAR activation was not altered in [MET KO + EGFRi] mice, as measured by nuclear CAR translocation and analysis of typical CAR target genes. However, TCPOBOP induced cell cycle activation was impaired in [MET KO + EGFRi] mice due to defective induction of cyclins, which regulate cell cycle initiation and progression. TCPOBOP-driven induction of FOXM1, a key transcriptional regulator of cell cycle progression during TCPOBOP-mediated hepatocyte proliferation, was greatly attenuated in [MET KO + EGFRi] mice. Interestingly, TCPOBOP treatment caused transient decline in HNF4 expression concomitant to proliferative response; this was not seen in [MET KO + EGFRi] mice. Transcriptomic profiling revealed vast majority (~40%) of TCPOBOP-dependent genes mainly related to proliferative response, but not to drug metabolism, were differentially expressed in [MET KO + EGFRi] mice. Conclusion: Taken together, combined disruption of EGFR and MET signaling lead to dramatic impairment of TCPOBOP-induced proliferative response without altering CAR activation.
TCPOBOP-induced hepatomegaly & hepatocyte proliferation is attenuated by combined disruption of MET & EGFR signaling.
No sample metadata fields
View SamplesTerahertz (THz) technology has emerged for biomedical applications such as scanning, molecular spectroscopy, and medical imaging. However, the biological effect of THz radiation is not fully understood. Non-thermal effects of THz radiation were investigated by applying a femtosecond-terahertz (fs-THz) pulse to mouse skin. Analysis of the genome-wide expression profile in fs-THz-irradiated skin indicated that wound responses were predominantly through NFB1- and Smad3/4-mediated transcriptional activation. Repeated fs-THz radiation delayed the closure of mouse skin punch wounds due to up-regulation of transforming growth factor-beta (TGF-). These findings suggest that fs-THz radiation provokes a wound-like signal in skin with increased expression of TGF- and activation of its downstream target genes, which perturbs the wound healing process in vivo.
High-power femtosecond-terahertz pulse induces a wound response in mouse skin.
Sex, Specimen part
View SamplesWe report the ability of the Drosha null/conditional-null mouse model to enable the identification of pri-miRNA transcripts. The conditional-null allele of Drosha phenocopies the null allele both in mESC and in mice, upon conversion to the null state with Cre. Overall design: Examination of the effects of Drosha deficiency in mouse embryonic stem cells.
microTSS: accurate microRNA transcription start site identification reveals a significant number of divergent pri-miRNAs.
No sample metadata fields
View SamplesThe overall goal of this project is to investigate the role of Erk2-mediated signaling in regulating the cellular metabolism of cranial neural crest (CNC) cells during palate development. Here, we conducted gene expression profiling of palate tissue from wild type mice as well as those with a neural crest specific conditional inactivation of the Erk2 gene. The latter mice exhibit micrognathia, tongue defects and cleft palate, which is among the most common congenital birth defects and observed in many syndromic conditions.
Disruption of the ERK/MAPK pathway in neural crest cells as a potential cause of Pierre Robin sequence.
Sex, Specimen part
View SamplesWe discovered induction of circular RNA in human fetal tissues, including the heart. In this study, we were able to recapitulate this induction by in vitro directed differentiation of hESCs to cardiomyocytes, paving the way for future studies into circular RNA regulation. Overall design: We harvested hESCs at sequential stages of differentiation: undifferentiated (day 0), mesoderm (day 2), cardiac progenitor (day 5) and definitive cardiomyocyte (day 14). We performed RNA sequencing in biological triplicate, with 3-8 technical replicates each.
Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development.
No sample metadata fields
View SamplesThe pervasive expression of circular RNA from protein coding loci is a recently discovered feature of many eukaryotic gene expression programs. Computational methods to discover and quantify circular RNA are essential to the study of the mechanisms of circular RNA biogenesis and potential functional roles they may play. In this paper, we present a new statistical algorithm that increases the sensitivity and specificity of circular RNA detection.by discovering and quantifying circular and linear RNA splicing events at both annotated exon boundaries and in un-annotated regions of the genome Unlike previous approaches which rely on heuristics like read count and homology between exons predicted to be circularized to determine confidence in prediction of circular RNA expression, our algorithm is a statistical approach. We have used this algorithm to discover general induction of circular RNAs in many tissues during human fetal development. We find that some regions of the brain show marked enrichment for genes where circular RNA is the dominant isoform. Beyond this global trend, specific circular RNAs are tissue specifically induced during fetal development, including a circular isoform of NCX1 in the developing fetal heart that, by 20 weeks, is more highly expressed than the linear isoform as well as beta-actin. In addition, while the vast majority of circular RNA production occurs at canonical U2 (major spliceosome) splice sites, we find the first examples of developmentally induced circular RNAs processed by the U12 (minor) spliceosome, and an enriched propensity of U12 donors to splice into circular RNA at un-annotated, rather than annotated, exons. Together, our algorithm and its results suggest a potentially significant role for circular RNA in human development. Overall design: 35 human fetal samples from 6 tissues (3 - 7 replicates per tissue) collected between 10 and 20 weeks gestational time were sequenced using Illumina TruSeq Stranded Total RNA with Ribo-Zero Gold sample prep kit.
Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development.
No sample metadata fields
View SamplesReceptor tyrosine kinases MET and EGFR are critically involved in initiation of liver regeneration. Other cytokines and signaling molecules also help in the early part of the process. Regeneration employs effective redundancy schemes to compensate for missing signals. Elimination of any single signaling pathway only delays but does not abolish the process. Our present study, however, shows that combined systemic elimination of MET and EGFR signaling abolishes liver regeneration, prevents restoration of liver mass and leads to liver decompensation. Our results demonstrate that liver function is dependent on synchronous availability of signaling from these two pathways. The study shows that MET and EGFR separately control many non-overlapping signaling endpoints, allowing for compensation when only one of the signals is blocked. The combined elimination of the signals however was not tolerated. The results provide critical new information on interactive MET and EGFR signaling and the contribution of their combined absence to regeneration arrest and liver decompensation.
Combined systemic elimination of MET and epidermal growth factor receptor signaling completely abolishes liver regeneration and leads to liver decompensation.
Specimen part, Time
View SamplesIn the present study, we analyze the effect of knocking down LSG1 and KRas(V12D) overexpression in MRC5 cells in the transcriptome using Ampliseq RNA sequencig. We observed that shLSG1 induced a potent senescence response that is characterized by the activation of ER-Stress and cholesterol biosynthetic pathway Overall design: MRC5 were transfected with siRNA to knockdown the small GTPase LSG1. Total mRNA was extracted and expression profiles were analyzed.
Inhibition of the 60S ribosome biogenesis GTPase LSG1 causes endoplasmic reticular disruption and cellular senescence.
Specimen part, Cell line, Subject
View Samples