Kurozu is a traditional Japanese rice vinegar. During fermentation and aging of the Kurozu liquid in an earthenware jar over 1 year, solid residue called Kurozu Moromi is produced. In the present study, we evaluated whether concentrated Kurozu or Kurozu Moromi could ameliorate cognitive dysfunction in the senescence accelerated P8 mouse. Senescence accelerated P8 mice were fed 0.25% (w/w) concentrated Kurozu or 0.5% (w/w) Kurozu Moromi for 4 or 25 weeks. Kurozu suppressed cognitive dysfunction and amyloid accumulation in the brain, while Kurozu Moromi showed a tendency to ameliorate cognitive dysfunction, but the effect was not significant. We hypothesize that concentrated Kurozu has an antioxidant effect, however, the level of lipid peroxidation in the brain did not differ in senescence accelerated P8 mice. DNA microarray analysis indicated that concentrated Kurozu increased HSPA1A mRNA expression, a protein that prevents protein misfolding and aggregation. The increase in HSPA1A expression by Kurozu was confirmed using quantitative real-time PCR and immunoblotting methods. Therefore, the suppression of amyloid accumulation by concentrated Kurozu may be associated with HSPA1A induction. However, concentrated Kurozu could not increase HSPA1A expression in mouse primary neurons, suggesting it may not directly affect neurons.
The Brewed Rice Vinegar Kurozu Increases HSPA1A Expression and Ameliorates Cognitive Dysfunction in Aged P8 Mice.
Sex, Age, Specimen part
View SamplesThe development of T cells has been characterized as taking place over three stages: nave (Tn), central memory (Tcm), and effector memory (Tem) cells.
Polarization diversity of human CD4+ stem cell memory T cells.
Sex, Age
View SamplesWe established several iPSCs from healthy donors, familial ALS (FALS) patients, and sporadic ALS (SALS) patients. Using our differentiation protocol originally developed, we differentiated these iPSCs toward spinal motor neurons (MNs) and reproduced ALS pathology in a dish.
Modeling sporadic ALS in iPSC-derived motor neurons identifies a potential therapeutic agent.
Specimen part, Disease, Treatment, Subject
View SamplesThe interaction between cancer and stroma plays a key role in tumor progression. Inactivation of p53 is often observed in stromal cells surrounding in cancer, suggesting that p53 in fibroblasts is involved in tumor progression.
TSPAN12 is a critical factor for cancer-fibroblast cell contact-mediated cancer invasion.
Sex, Specimen part, Cell line
View SamplesMucolipidosis type II (MLII) is a severe inherited multisystemic disorder caused by mutations in the GNPTAB gene. Skeletal abnormalities are a predominant feature of MLII. Here we investigate the gene expression in a knock-in mouse model for mucolipidosis type II, generated by the insertion of a cytosine in the murine Gnptab gene (c.3082insC) that is homologous to a homozygous mutation in an MLII patient.
Decreased bone formation and increased osteoclastogenesis cause bone loss in mucolipidosis II.
Specimen part
View SamplesIn lung cancer progression, p53 mutations are more often observed in invasive tumors than in non-invasive tumors, suggesting that p53 is involved in tumor invasion and metastasis. To understand the nature of p53 function as a tumor suppressor, it is crucial to elucidate the detailed mechanism of the alteration in epithelial cells, the main origin of solid tumors, following p53 inactivation.
TSPAN2 is involved in cell invasion and motility during lung cancer progression.
Sex, Age, Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Identification of the cortical neurons that mediate antidepressant responses.
Specimen part, Treatment
View SamplesMolecular phenotyping of cell types and neural circuits underlying pathological neuropsychiatric conditions and their responses to therapy provides one avenue for the development of more specific and effective treatments. In this study, we identify a cell population in the cerebral cortex that shows robust and specific molecular adaptations following long-term SSRI treatment.
Identification of the cortical neurons that mediate antidepressant responses.
Specimen part, Treatment
View SamplesMolecular phenotyping of cell types and neural circuits underlying pathological neuropsychiatric conditions and their responses to therapy provides one avenue for the development of more specific and effective treatments. In this study, we identify a cell population in the cerebral cortex that shows robust and specific molecular adaptations following long-term SSRI treatment.
Identification of the cortical neurons that mediate antidepressant responses.
Specimen part, Treatment
View SamplesMolecular phenotyping of cell types and neural circuits underlying pathological neuropsychiatric conditions and their responses to therapy provides one avenue for the development of more specific and effective treatments. In this study, we identify a cell population in the cerebral cortex that shows robust and specific molecular adaptations following long-term SSRI treatment.
Identification of the cortical neurons that mediate antidepressant responses.
Specimen part, Treatment
View Samples