To examine the transcriptome of early testicular somatic cells during gonadogenesis at 12.5dpc RNA sequencing (RNA-Seq) was performed on murine primary testicular cell lineages isolated from the Sf1-eGFP line by FACS. The three main somatic cell lineages of the testis were isolated: the Sertoli cells which direct male development; the fetal Leydig cells (FLCs) that produce steroid hormones and virilise the XY individual and a heterogenous population of interstitial cells, some of which give rise to the adult Leydig cells (ALCs). This dataset provides a platform for exploring the biology of FLCs and understanding the role of these cells in testicular development and masculinization of the embryo, and a basis for targeted studies designed to identify causes of idiopathic XY DSD. Overall design: RNA-Seq of 3 enriched cell populations from 12.5dpc mouse gonad (Sertoli cells, Leydig cells and Interstitial cells isolated by FACS-sorting) on an Illumina HiSeq 1500, in triplicate.
Purification and Transcriptomic Analysis of Mouse Fetal Leydig Cells Reveals Candidate Genes for Specification of Gonadal Steroidogenic Cells.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
ChIP-seq analysis reveals distinct H3K27me3 profiles that correlate with transcriptional activity.
Specimen part
View SamplesTranscriptional control is dependent on a vast network of epigenetic modifications. One epigenetic mark of particular interest is tri-methylation of lysine 27 on histone H3 (H3K27me3), which is catalyzed and maintained by the Polycomb Repressor Complex (PRC2). Although this histone mark is studied widely, the precise relationship between its local pattern of enrichment and regulation of gene expression is currently unclear. We have used ChIP-seq to generate genome wide maps of H3K27me3 enrichment, and have identified three enrichment profiles with distinct regulatory consequences. First, a broad domain of H3K27me3 enrichment across the body of genes corresponds to the canonical view of H3K27me3 as inhibitory to transcription. Second, a peak of enrichment around the transcription start site is commonly associated with bivalent genes, where H3K4me3 also marks the TSS. Finally and most surprisingly, we identified an enrichment profile with a peak in the promoter of genes that is associated with active transcription. Genes with each of these three profiles were found in different proportions in each of the cell types studied. The data analysis techniques developed here will be useful for the identification of common enrichment profiles for other histone modifications that have important consequences for transcriptional regulation.
ChIP-seq analysis reveals distinct H3K27me3 profiles that correlate with transcriptional activity.
Specimen part
View SamplesDifferentiation of naïve CD4+ T cells into effector (Th1, Th2 and Th17) and induced regulatory (iTreg) T cells requires lineage-specifying transcription factors and epigenetic modifications that allow appropriate repression or activation of gene transcription. The epigenetic silencing of cytokine genes is associated with the repressive H3K27 trimethylation mark, mediated by Ezh2 or Ezh1 methyltransferase components of the polycomb repressive complex 2 (PRC2). EZH2 over-expression and activating mutations are implicated in tumorigenesis and correlate with poor prognosis in several tumor types 35. This spurred the development of EZH2 inhibitors which, by inducing tumor cell growth arrest and cell death, show therapeutic promise in cancer. A role for Ezh2 in suppressing Th1 and Th2 cytokine production and survival has recently been reported. It is not entirely clear whether Ezh2-PRC2 plays a role in H3K27me3 in cytokine loci in naïve CD4+ T cells and whether H3K27me3 has a non-redundant role in T helper cell lineage differentiation and survival. Here, we investigate the effects of T cell-specific Ezh2 deletion to determine the role that Ezh2-PRC2 plays in regulating the fate of differentiating naïve CD4+ T cells. Loss of Ezh2 altered the expression of 1328 genes in Th0 and 1979 genes in iTreg cells. Gene expression changes were positively correlated in both cell types, indicating that Ezh2 targets similar genes in these cells. As expected, Ifng was one of the genes most increased in expression by following loss of Ezh2. In addition, expression of Tbx21 homolog Eomes, a transcription factor that regulates IFNG production, was also significantly increased. We then performed H3K27me3 ChIP-seq on Ezh2fl/fl and Ezh2fl/fl.CD4Cre Th0 cells. Consistent with cellular phenotype and RNA-seq data, we observed a loss of the H3K27me3 at Eomes, Il4 and Il10 loci . Very low levels of H3K27me3 marks were present at Ifng and Tbx21 loci in differentiated Ezh2fl/fl Th0 cells, suggesting that upon differentiation, upregulation or activation of transcription factors accounts for IFNG overproduction. A significant loss of H3K27me3 was observed >2kb upstream of Gata3 locus , however this did not result in increased transcription . Of the 22381 genes tested for changes in H3K27me3, 1360 showed a statistically significant decrease in Ezh2fl/fl.CD4Cre Th0 cells, compared to wildtype. Furthermore, 404 of these genes also showed a concomitant gain in expression in Ezh2fl/fl.CD4Cre Th0 cells, suggesting that these loci are likely direct Ezh2-PRC2 targets. Overall design: There are 3 biological replicates each of Ezh2fl/fl.CD4Cre and Ezh2fl/fl in both Th0 and iTreg cells for the RNA-seq experiment. There are 2 biological replicates each of Ezh2fl/fl.CD4Cre and Ezh2fl/fl in Th0 cells for the ChIP-seq experiment.
The polycomb repressive complex 2 governs life and death of peripheral T cells.
No sample metadata fields
View SamplesPodocytes are highly specialised cells within the glomeruli of the kidney that maintain the filtration barrier by forming interdigitating foot processes and slit-diaphragms. Disruption to these features result in proteinuria and glomerulosclerosis. Studies into podocyte biology and disease have previously relied on conditionally immortalised cell lines due to the non- proliferative nature of this cell type. Here we describe an advanced model to study both podocyte and glomerular biology using isolated glomeruli from kidney organoids derived from human pluripotent stem cells. Overall design: Gene expression profiling of day three 17, 21 and 26 day kidney organoid derived glomeruli respectively with heterzygous genotype for BFP tagged MAFB; gene expression profiling of three day 25 kidney organoid derived glomeruli; gene expression profiling of three organoid-derived podocytes grown out for 3 days from day 25 kidney organoid derived glomeruli.
3D organoid-derived human glomeruli for personalised podocyte disease modelling and drug screening.
Specimen part, Subject
View SamplesPolycomb Repressive Complex 2 (PRC2) has been shown to play a key role in hematopoietic stem and progenitor cell (HSPC) function. Analyses of mouse mutants harboring deletions of core components have implicated PRC2 in fine-tuning multiple pathways that instruct HSPC behavior, yet how PRC2 is targeted to specific genomic loci within HSPCs remains unknown. Here we use shRNA-mediated knockdown to survey the function of known PRC2 accessory factors in HSPCs by testing the competitive reconstitution capacity of transduced murine fetal liver cells. We find that similar to the phenotype observed upon depletion of core subunit Suz12, depleting Jarid2 enhances the competitive transplantation capacity of both fetal and adult, mouse and human HSPCs. Gene expression profiling revealed common Suz12 and Jarid2 target genes that are enriched for the H3K27me3 mark established by PRC2. These data implicate Jarid2 as an important component of PRC2 that has a central role in coordinating HSPC function. Overall design: RNA-seq of jarid knockdown, suz knockdown and control from HSPC in 16 week old mice.
Jarid2 regulates hematopoietic stem cell function by acting with polycomb repressive complex 2.
No sample metadata fields
View SamplesThe production of definitive haematopoietic stem/progenitor cells from human pluripotent stem cells (hPSCs) remains a significant challenge. Using reporter lines to track the endothelial (SOX17) to haematopoietic (RUNX1C) transition, we found that hPSC differentiated in growth factor supplemented serum free medium generated RUNX1C+CD34+ clonogenic cells that homed to the bone marrow, but did not engraft. Compared to repopulation-competent cord blood CD34+ cells, RUNX1C+CD34+ progenitors lacked HOXA gene expression, indicating incorrect mesoderm patterning. This deficiency was ameliorated by a timed pulse of WNT activation combined with ACTIVIN antagonism. Significantly, these HOXA+ cultures now formed complex SOX17+ vessels that produced fetal liver-like haematopoietic cells, similar to the human aorta-gonad-mesonephros (AGM). Comparison of transcriptional profiles of these nascent haematopoietic stem/progenitors with cells isolated from human AGM confirmed significant similarities, consistent with the assignment of our in vitro generated cells to the definitive human haematopoietic lineage. Our findings argue that HOXA codes established early in differentiation predict cellular potential and provide correct cell patterning for the specification of definitive haematopoietic lineages from hPSCs. Overall design: mRNA profiles of 26 samples were obtained for 5 different cell populations and 2 different treatments.
Differentiation of human embryonic stem cells to HOXA<sup>+</sup> hemogenic vasculature that resembles the aorta-gonad-mesonephros.
Treatment, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
PrtT-regulated proteins secreted by Aspergillus fumigatus activate MAPK signaling in exposed A549 lung cells leading to necrotic cell death.
Specimen part, Cell line, Treatment
View SamplesGan mice express Wnt1, Ptgs2, and Ptges, which develop inflammation-associated gastric tumors (Oshima et al, Gastroenterology 131: 1086, 2006). We examined the role of MyD88 in tumorigenesis by construction of Myd88-/- Gan mice and bone marrow transplantation into Gan mice from Myd88-/- mice. Overall design: Total RNA was prepared from wild-type normal glandular stomach (n=3: WT 1–WT 3), B6 C2mE mice (n=3: C2mE 1–C2mE 3), B6 Gan mice (n=3: Gan1–Gan3), B6 Gan MyD88-/- mice (n=3: Gan 1 (MyD88-/-)–Gan 3 (MyD88-/-)), and B6 bone marrow transplanted Gan mice from Myd88-/- mice (n=3: BMT-Gan 1 (from MyD88-/-)–BMT-Gan 3 (from MyD88-/-)). We used Illumina HiSeq 2000, and examined expression profiles.
NF-κB-induced NOX1 activation promotes gastric tumorigenesis through the expansion of SOX2-positive epithelial cells.
No sample metadata fields
View SamplesResponse of A549 cells treated with Aspergillus fumigatus wild type germinating conidia (WT_GC) or PrtT protease deficient mutant conidia (PrtT-GC) or inert acrylic 2-4 micron beads (Beads) for 8h
PrtT-regulated proteins secreted by Aspergillus fumigatus activate MAPK signaling in exposed A549 lung cells leading to necrotic cell death.
Specimen part, Cell line, Treatment
View Samples