Germline-specific RNA helicase Spindle-E (Spn-E) is known to be essential for piRNA silencing in Drosophila that takes place mainly in the perinuclear nuage granules. Loss-of-function spn-E mutations lead to tandem Stellate genes derepression in the testes and retrotransposon mobilization in the ovaries. However, Spn-E functions in the piRNA pathway are still obscure. Analysis of total library of short RNAs from the testes of spn-E heterozygous flies revealed the presence of abundant piRNA ping-pong pairs originating from Su(Ste) transcripts. The abundance of these ping-pong pairs were sharply reduced in the library from the testes of spn-E mutants. Thus we found that ping-pong mechanism contributed to Su(Ste) piRNA generation in the testes. The lack of Spn-E caused a significant drop of protein levels of key ping-pong participants, Aubergine (Aub) and AGO3 proteins of PIWI subfamily, in the germline of both males and females, but did not disrupt of their assembly in nuage granules. We found that observed decline of the protein expression was not caused by suppression of aub and ago3 transcription as well as total transcription, indicating possible contribution of Spn-E to post-transcriptional regulation. Overall design: The fractions of small RNAs (19-29 nt) from testis of Drosophila melanogaster spnE/+ spnE/- strains were sequenced using Illumina HiSeq 2000.
RNA helicase Spn-E is required to maintain Aub and AGO3 protein levels for piRNA silencing in the germline of Drosophila.
Specimen part, Subject
View SamplesWe performed gene expression profiling of oligooxopiperazines (OPs) targeting the hypoxia-inducible transcription factor complex. Treatment of cells with OPs inhibited hypoxia-inducible gene expression in A549 cells.
In vivo modulation of hypoxia-inducible signaling by topographical helix mimetics.
Cell line
View SamplesWe performed gene expression profiling of hydrogen-bond surrogate that targets hypoxia-inducible transcription factior complex and results in inhibition of hypoxia-inducible genes with relatively minimal perturbation of non-targeted signaling pathways.
Protein domain mimetics as in vivo modulators of hypoxia-inducible factor signaling.
Cell line, Treatment
View SamplesThe PR domain containing 1a, with ZNF domain factor, gene prdm1a plays an integral role in the development of a number of different cell types during vertebrate embryogenesis, including neural crest cells, Rohon-Beard (RB) sensory neurons and the cranial neural crest-derived craniofacial skeletal elements. To better understand how Prdm1a regulates the development of various cell types in zebrafish, we performed a microarray analysis comparing wild type and prdm1a mutant embryos and identified a number of genes with altered expression in the absence of prdm1a. Rescue analysis determined that two of these, sox10 and islet1, lie downstream of Prdm1a in the development of neural crest cells and Rohon-Beard neurons, respectively. In addition, we identified a number of other novel downstream targets of Prdm1a that may be important for the development of diverse tissues during zebrafish embryogenesis.
prdm1a Regulates sox10 and islet1 in the development of neural crest and Rohon-Beard sensory neurons.
Age, Specimen part
View SamplesWe used microarrays to assess gene expression changes in cells with siRNA-mediated knockdown of OPG compared to normal cells. Furthermore, we used microarrays to assess gene expression in cells treated with either RANKL or TRAIL compared to vehicle-treated cells.
No influence of OPG and its ligands, RANKL and TRAIL, on proliferation and regulation of the calcification process in primary human vascular smooth muscle cells.
Specimen part, Treatment
View SamplesRNA-Sequencing of the trigeminal nucleus caudalis and spinal cord, dorsal horn in male naive rats (Wistar Han) of 10 weeks old Overall design: 6 naive rats were killed after 2 weeks of arrival, both trigeminal nucleus caudalis and spinal cord dorsal horn were dissected using laser capture microdissection of each rat.
Transcriptomic profiling of trigeminal nucleus caudalis and spinal cord dorsal horn.
No sample metadata fields
View SamplesBackground. Most colorectal cancers (CRC) arise in a progression through adenoma to carcinoma phenotypes as a consequence of altered genetic information. Clinical progression of CRC may occur in parallel with distinctive signaling alterations. We designed multidirectional analyses integrating microarray-based data with biostatistics and bioinformatics to elucidate the signaling and metabolic alterations underlying CRC development in the adenoma-carcinoma sequence. Methodology/Principal Findings. Studies were performed on normal mucosa, adenoma, and CRC samples obtained during surgery or colonoscopy. Collections of cryostat sections prepared from the tissue samples were evaluated by a pathologist to control the relative cell type content. RNA was isolated from 105 macro- and 40 microdissected specimens. The measurements were done using Affymetrix GeneChip HG-U133plus2, and probe set data were generated using two normalization algorithms: MAS5 and GCRMA with LVS. The data were evaluated using pair-wise comparisons and data decomposition into SVD modes. The method selected for the functional analysis used the Kolmogorov-Smirnov test. Based on a consensus of the results obtained by two tissue handling procedures, two normalization algorithms, and two probe set sorting criteria, we identified six KEGG signaling and metabolic pathways (cell cycle, DNA replication, p53 signaling pathway, purine metabolism, pyrimidine metabolism, and RNA polymerase) that are significantly altered in both macro- and microdissected tumor samples compared to normal colon. On the other hand, pathways altered between benign and malignant tumors were identified only in the macrodissected tissues. Conclusion/Significance. Multidirectional analyses of microarray data allow the identification of essential signaling alterations underlying CRC development. Although the proposed strategy is computationally complex and laborintensive, it may reduce the number of false results.
Modeling oncogenic signaling in colon tumors by multidirectional analyses of microarray data directed for maximization of analytical reliability.
Sex, Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Identification and Functional Validation of Reciprocal microRNA-mRNA Pairings in African American Prostate Cancer Disparities.
Specimen part
View SamplesA clinical study evaluating the dosing of an oral HDACi panobinostat in patient infected with HIV-1. Dosing was 20 mg orally, 3 times weekly, every other week for a total of 8 weeks.
Treatment of HIV-Infected Individuals with the Histone Deacetylase Inhibitor Panobinostat Results in Increased Numbers of Regulatory T Cells and Limits <i>Ex Vivo</i> Lipopolysaccharide-Induced Inflammatory Responses.
Sex
View SamplesProstate cancer (PCa) tends to be more aggressive and lethal in African Americans (AA) compared to European Americans (EA). To further understand the biological factors accounting for the PCa disparities observed in AA and EA patients, we performed gene profiling using Affymetrix human exon 1.0 ST arrays to identify the differentially expressed genes beween AA cancer and patient matched normal tissues.
Identification and Functional Validation of Reciprocal microRNA-mRNA Pairings in African American Prostate Cancer Disparities.
Specimen part
View Samples