Co-expression of genes that physically cluster together is a common characteristic of eukaryotic transcriptomes. Identifying these groups of co-expressed genes is important to the functional annotation of genomes and understanding the evolutionary fates of the clustered genes.
Coordinated evolution of co-expressed gene clusters in the Drosophila transcriptome.
No sample metadata fields
View SamplesLong-term memory formation in Drosophila melanogaster is an important neuronal function shaping the insect's behavioral repertoire by allowing an individual to modify behaviors on the basis of previous experiences. In conditioned courtship or courtship suppression, male flies that have been repeatedly rejected by mated females during courtship advances are less likely than na ve males to subsequently court another mated female. This long-term courtship suppression can last for several days after the initial rejection period. Although genes with known functions in many associative learning paradigms, including those that function in cyclic AMP signaling and RNA translocation, have been identified as playing critical roles in long-term conditioned courtship, it is clear that additional mechanisms also contribute. We have used RNA sequencing to identify differentially expressed genes and transcript isoforms between na ve males and males subjected to courtship-conditioning regimens that are sufficient for inducing long-term courtship suppression. Transcriptome analyses 24 hours after the training regimens revealed differentially expressed genes and transcript isoforms with predicted and known functions in nervous system development, chromatin biology, translation, cytoskeletal dynamics, and transcriptional regulation. A much larger number of differentially expressed transcript isoforms were identified, including genes previously implicated in associative memory and neuronal development, including fruitless, that may play functional roles in learning during courtship conditioning. Our results shed light on the complexity of the genetics that underlies this behavioral plasticity and reveal several new potential areas of inquiry for future studies.
Identification of gene expression changes associated with long-term memory of courtship rejection in Drosophila males.
No sample metadata fields
View SamplesTo gain insight into the molecular underpinnings of the post-mating response that depend on the germline, we independently assess the contribution of the female germline and the male germline on gene expression changes in head tissues of females using RNA-seq. Overall design: mRNA profiles of head tissues in virgin and mated (1 and 3 days post-mating) females that either have or are lacking a germline and females mated to males that either have or are lacking a germline. Samples were generated in triplicate and sequenced on an Illumina Genome Analyzer IIx.
The <i>Drosophila</i> Post-mating Response: Gene Expression and Behavioral Changes Reveal Perdurance and Variation in Cross-Tissue Interactions.
Sex, Age, Subject
View Samples