The hilum region of the mouse ovary, the transitional/junction area between OSE, mesothelium and tubal (oviductal) epithelium is identified as a previously unrecognized stem cell niche of the OSE. OSE cells with high ALDH1 activity have been predominantly detected in the hilum region by immunohistochemical staining.
Ovarian surface epithelium at the junction area contains a cancer-prone stem cell niche.
Age, Specimen part
View SamplesThe process for evaluating chemical safety is inefficient, costly, and animal intensive. There is growing consensus that the current process of safety testing needs to be significantly altered to improve efficiency and reduce the number of untested chemicals. In this study, the use of short-term gene expression profiles was evaluated for predicting the increased incidence of mouse lung tumors. Animals were exposed to a total of 26 diverse chemicals with matched vehicle controls over a period of three years. Upon completion, significant batch-related effects were observed. Adjustment for batch effects significantly improved the ability to predict increased lung tumor incidence. For the best statistical model, the estimated predictive accuracy under honest five-fold cross-validation was 79.3% with a sensitivity and specificity of 71.4 and 86.3%, respectively. A learning curve analysis demonstrated that gains in model performance reached a plateau at 25 chemicals, indicating that the size of the current data set was sufficient to provide a robust classifier. The classification results showed a small subset of chemicals contributed disproportionately to the misclassification rate. For these chemicals, the misclassification was more closely associated with genotoxicity status than efficacy in the original bioassay. Statistical models were also used to predict dose-response increases in tumor incidence for methylene chloride and naphthalene. The average posterior probabilities for the top models matched the results from the bioassay for methylene chloride. For naphthalene, the average posterior probabilities for the top models over-predicted the tumor response, but the variability in predictions were significantly higher. The study provides both a set of gene expression biomarkers for predicting chemically-induced mouse lung tumors as well as a broad assessment of important experimental and analysis criteria for developing microarray-based predictors of safety-related endpoints.
Use of short-term transcriptional profiles to assess the long-term cancer-related safety of environmental and industrial chemicals.
Sex, Age, Specimen part, Disease, Subject
View SamplesTo study characteristics of the orapharyngeal epithelia which may influence susceptibility or resistance to HIV, we performed microarray analysis of the tonsil and gingival epithelium.Tonsil epithelium has been implicated in HIV pathogenesis, but its role in oral transmission remains controversial. We performed microarray analysis of Laser Capture Microdissected tonsil and gingival epithelium. Our data revealed that genes related to immune functions such as antibody production and antigen processing were increasingly expressed in tonsil compared to the epithelium of another oro-pharyngeal site, gingival epithelium. Importantly, tonsil epithelium highly expressed genes associated with HIV entrapment and/or transmission, including the HIV co-receptor CXCR4 and the potential HIV binding molecules, FcRIII, complement receptor 2, and various complement components. This increased expression of molecules involved in viral recognition, binding and entry may favor virus-epithelium interaction in an environment with reduced innate anti-viral mechanisms. Specifically, secretory leukocyte protease inhibitor, an innate molecule with anti-HIV activity, was minimal in the tonsil epithelium, in contrast to oral mucosa. Collectively, our data suggest that increased expression of molecules associated with HIV binding and entry coupled with decreased innate anti-viral factors may render the tonsil a potential site for oral transmission.
Tonsil epithelial factors may influence oropharyngeal human immunodeficiency virus transmission.
No sample metadata fields
View SamplesDue to heterogeneous multifocal nature of prostate cancer (PCa), there is currently a lack of biomarkers that stably distinguish it from benign prostatic hyperplasia (BPH), predict clinical outcome and guide the choice of optimal treatment. In this study, RNA-seq analysis was applied to formalin-fixed paraffin-embedded (FFPE) tumor and matched normal tissue samples collected from Russian patients with PCa and BPH. We identified 3384 genes differentially expressed (DE) (FDR < 0.05) between tumor tissue of PCa patients and adjacent normal tissue as well as both tissue types from BPH patients. Overexpression of four of the genes previously not associated with PCa (ANKRD34B, NEK5, KCNG3, and PTPRT) was validated by RT-qPCR. Furthermore, the enrichment analysis of overrepresented microRNA and transcription factor (TF) recognition sites within DE genes revealed common regulatory elements of which 13 microRNAs and 53 TFs were thus linked to PCa for the first time. Moreover, 8 of these TFs (FOXJ2, GATA6, NFE2L1, NFIL3, PRRX2, TEF, EBF2 and ZBTB18) were found to be differentially expressed in this study, making them not only candidate biomarkers of prostate cancer but also potential therapeutic targets. Overall design: Whole transcriptome profiling of tumor tissue and matched adjacent normal tissue from 15 patients with PCa and 2 with BPH.
Novel RNA biomarkers of prostate cancer revealed by RNA-seq analysis of formalin-fixed samples obtained from Russian patients.
Specimen part, Disease, Subject
View SamplesEndometriosis is characterized by progesterone resistance and is associated with infertility. Krppel-like Factor 9 (KLF9) is a progesterone receptor (PGR)-interacting protein, and mice null for Klf9 are subfertile. Whether loss of KLF9 contributes to progesterone resistance of eutopic endometrium of women with endometriosis is unclear. The aim of this study was to investigate KLF9 and PGR co-regulation of human endometrial stromal cell (HESC) transcriptome network.
Krüppel-like factor 9 and progesterone receptor coregulation of decidualizing endometrial stromal cells: implications for the pathogenesis of endometriosis.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
KSHV-encoded miRNAs target MAF to induce endothelial cell reprogramming.
Sex, Specimen part
View SamplesCancer cells express different sets of receptor type tyrosine kinases. These receptor kinases may be activated through autocrine or paracrine mechanisms. Fibroblasts may modify the biologic properties of surrounding cancer cells through paracrine mechansms.
The role of HGF/MET and FGF/FGFR in fibroblast-derived growth stimulation and lapatinib-resistance of esophageal squamous cell carcinoma.
Specimen part, Cell line
View SamplesKaposi sarcoma is the most common cancer in AIDS patients and is typified by red skin lesions. The disease is caused by the KSHV virus (HHV8) and is recognisable by its distinctive red skin lesions. The lesions are KSHV-infected spindle cells, most commonly the lymphatic endothelial and blood vessel endothelial cells (LEC and BEC), plus surrounding stroma. The effects of KSHV infection of both LEC and BEC were assayed using Affymetrix hgu133plus2 chips at 72 hours post infection.
KSHV-encoded miRNAs target MAF to induce endothelial cell reprogramming.
Specimen part
View SamplesKaposi sarcoma is the most common cancer in AIDS patients and is typified by red skin lesions. The disease is caused by the KSHV virus (HHV8) and is recognisable by its distinctive red skin lesions. The lesions are KSHV-infected spindle cells, most commonly the lymphatic endothelial and blood vessel endothelial cells (LEC and BEC), plus surrounding stroma. The KSHV virus expresses multiple microRNA in a single cluster. Here we test the effects of this KSHV microRNA cluster in LEC cells using Affymetrix hgu133plus2 chips.
KSHV-encoded miRNAs target MAF to induce endothelial cell reprogramming.
Specimen part
View SamplesKaposi sarcoma is the most common cancer in AIDS patients and is typified by red skin lesions. The disease is caused by the KSHV virus (HHV8) and is recognisable by its distinctive red skin lesions. The lesions are KSHV-infected spindle cells, most commonly the lymphatic endothelial and blood vessel endothelial cells (LEC and BEC), plus surrounding stroma. The KSHV virus expresses multiple MAF-downregulating microRNA. Here we test the effects of MAF silencing by siRNA in LEC cells using Affymetrix hgu133plus2 chips.
KSHV-encoded miRNAs target MAF to induce endothelial cell reprogramming.
Specimen part
View Samples