Caspase-8 is a cystein protease involved in regulating apoptosis. The function of caspase-8 was studied in the intestinal epithelium, using mice with an intestinal epithelial cell specific deletion of caspase-8.
Caspase-8 regulates TNF-α-induced epithelial necroptosis and terminal ileitis.
Specimen part
View SamplesTo uncover molecular mechanisms specifically involved in the pathogenesis of colitis-associated colon cancer (CAC), we studied tumorigenesis in experimental models of CAC and sporadic CRC that mimic characteristics of human CRC. Using comparative whole genome expression profiling, we observed differential expression of epiregulin (Ereg) in mouse models of colitis-associated, but not sporadic colorectal cancer. Similarly, highly significant upregulation of Ereg expression was found in cohorts of patients with colitis-associated cancer in inflammatory bowel disease but not in sporadic colorectal cancer. Furthermore, tumor-associated fibroblasts were identified as major source of Ereg in colitis-associated neoplasias. Functional studies showed that Ereg-deficient mice, although more prone to colitis, are strongly protected from colitis-associated tumors, and data from serial endoscopic studies revealed that Ereg promotes growth rather than initiation of tumors.
Tumor fibroblast-derived epiregulin promotes growth of colitis-associated neoplasms through ERK.
Sex, Specimen part
View SamplesHere, we examined the role of intestinal epithelial specific tumor suppressive function of 53. We provide evidence that p53 plays a dual role during carcinogen-induced tumorigenesis. At the initiation stage, p53 controls DNA damage and survival of initiated epithelia. In contrast, at later stages, loss of p53 is associated with the formation of an inflammatory microenvironment that is linked to epithelial mesenchymal transition, invasion and metastasis and the activation of NF-kappaB and Stat3. Thus, we propose a novel p53 controlled tumor suppressive function during the progression stage of colorectal cancer that is independent of its well-established role in cell cycle regulation, apoptosis and senescence.
Loss of p53 in enterocytes generates an inflammatory microenvironment enabling invasion and lymph node metastasis of carcinogen-induced colorectal tumors.
Specimen part
View SamplesInflammatory Bowel Diseases are associated with marked alterations of IECs with a subsequent loss of barrier function.
Rho-A prenylation and signaling link epithelial homeostasis to intestinal inflammation.
Specimen part
View SamplesPrenylation is a post-translational modification of proteins consisting on the attachment of a lipid residue (isoprenoid). GGTase-I is one of the prenyltransferases catalyzing prenylation.
Rho-A prenylation and signaling link epithelial homeostasis to intestinal inflammation.
Specimen part
View SamplesAdam17, a shedding protease, is strongly upregtulated during inflammation and cancer. Here we investigate the genome wide effects of Adam17 knock out on the transcriptome.
Critical role of the disintegrin metalloprotease ADAM17 for intestinal inflammation and regeneration in mice.
Specimen part
View SamplesMurine B cells can be activated via the surface receptors TLR4 and CD40. For a global assessment of differences in gene expression between these two different modes of B cell activation a genome wide transcriptome analysis was performed. In order to dissect different gene expression profiles of B cells, activation was induced by LPS or LPS + anti-CD40 for 24h and 72h. Both activation states were compared to each other but also to nave B cells.
IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases.
Sex, Specimen part
View SamplesThe heat shock response (HSR) is a mechanism to cope with proteotoxic stress by inducing the expression of molecular chaperones and other heat shock response genes. The HSR is evolutionarily well conserved and has been widely studied in bacteria, cell lines and lower eukaryotic model organisms. However, mechanistic insights into the HSR in higher eukaryotes, in particular in mammals, are limited. We have developed an in vivo heat shock protocol to analyze the HSR in mice and dissected heat shock factor 1 (HSF1)-dependent and -independent pathways. Whilst the induction of proteostasis-related genes was dependent on HSF1, the regulation of circadian function related genes, indicating that the circadian clock oscillators have been reset, was independent of its presence. Furthermore, we demonstrate that the in vivo HSR is impaired in mouse models of Huntington's disease but we were unable to corroborate the general repression of transcription after a heat shock found in lower eukaryotes. Overall design: RNA-Seq was performed on mRNA isolated from quadriceps femoris muscle of 24 mice. These mice were of wild type, R6/2, and Hsf1-/- genotypes. Two mice of each genotype were tested in four conditions: (1) heat shock, (2) control heat shock, (3) HSP90 inhibition (NVP-HSP990), and (4) HSP90 inhibition vehicle.
HSF1-dependent and -independent regulation of the mammalian in vivo heat shock response and its impairment in Huntington's disease mouse models.
Age, Specimen part, Treatment, Subject
View SamplesPurpose: Transcriptome profiling (RNA-seq) to microarray to evaluate transcriptional changes in the heart of HD mouse models Methods: Heart mRNA profiles of 4-weeks-old wild-type (WT) and R6/2 transgenic; 15-weeks-old WT and R6/2 transgenic mice; 8-month-old WT and HdhQ150 knock-in mice; 22-month-old WT and HdhQ150 knock-in mice were generated by deep sequencing, in triplicate, using Illumina Hi-seq 2000. Conclusions: Our study showed that there is no major transcriptional deregulation in the heart of mouse models of HD. Overall design: Heart mRNA profiles of 4-weeks-old wild-type (WT) and R6/2 transgenic; 15-weeks-old WT and R6/2 transgenic mice; 8-month-old WT and HdhQ150 knock-in mice; 22-month-old WT and HdhQ150 knock-in mice were generated by deep sequencing, in triplicate, using Illumina Hi-seq 2000.
Dysfunction of the CNS-heart axis in mouse models of Huntington's disease.
No sample metadata fields
View SamplesCell Line: This experiment was designed to measure the transcriptional responses to four kinase inhibitors across a five-logarithm dose range. The A549 human lung cancer cell line was treated with dasatinib, imatinib or nilotinib (4 hours and 20 hours) or PD0325901 (4 hours). Treatments used a 12-point dose range (30 uM with 3-fold dilutions down to 0.17 nM; 0.5% DMSO vehicle for all treatments). Experimental design prevented row or column handling effects being confounded with dose effect.
Transcriptional profiling of the dose response: a more powerful approach for characterizing drug activities.
Disease, Cell line, Compound, Time
View Samples