To investigate whether co-expression of PBX3/MEIS1 can mimic that of MLL-AF9, HOXA9/MEIS1 or HOXA9/PBX3 in inducing leukemogenesis, we conducted in vivo mouse bone marrow transplantation (BMT) assays. Briefly, normal mouse bone marrow (BM) progenitor (i.e., lineage negative; Lin-) cells collected from B6.SJL (CD45.1) donor mice (CD45.1) were retrovirally co-transduced with MSCVneo-MLL-AF9+MSCV-PIG (MLL-AF9), MSCVneo-HOXA9+MSCV-PIG (HOXA9), MSCVneo-HOXA9+MSCV-PIG-MEIS1 (HOXA9+MEIS1), MSCVneo-HOXA9+MSCV-PIG-PBX3 (HOXA9+PBX3), MSCV-PIG-PBX3+MSCVneo-MEIS1 (PBX3+MEIS1), MSCVneo+MSCV-PIG-PBX3 (PBX3) , MSCVneo+MSCV-PIG-MEIS1 (MEIS1), or MSCVneo+MSCV-PIG (normal control; NC). Retrovirally transduced cells then were cultured with cytokines as well as puromycin and G418. Seven days later, the donor cells were transplanted into lethally irradiated (960 rads) 8- to 10-week-old C57BL/6 (CD45.2) recipient mice. The transplanted mice were watched for leukemogenesis. Then, gene expression profiling was conducted with bone marrow samples collected from leukemia groups and control group.
PBX3 and MEIS1 Cooperate in Hematopoietic Cells to Drive Acute Myeloid Leukemias Characterized by a Core Transcriptome of the MLL-Rearranged Disease.
No sample metadata fields
View Samplesc-MYC (MYC) overexpression or hyperactivation is one of the most common drivers of human cancer. Despite intensive study, the MYC oncogene remains recalcitrant to therapeutic inhibition. Like other classic oncogenes, hyperactivation of MYC leads to collateral stresses onto cancer cells, suggesting that tumors harbor unique vulnerabilities arising from oncogenic activation of MYC. Herein, we discover the spliceosome as a new target of oncogenic stress in MYC-driven cancers. We identify BUD31 as a MYC-synthetic lethal gene, and demonstrate that BUD31 is a splicing factor required for the assembly and catalytic activity of the spliceosome. Core spliceosomal factors (SF3B1, U2AF1, and others) associate with BUD31 and are also required to tolerate oncogenic MYC. Notably, MYC hyperactivation induces an increase in total pre-mRNA synthesis, suggesting an increased burden on the core spliceosome to process pre-mRNA. In contrast to normal cells, partial inhibition of the spliceosome in MYC-hyperactivated cells leads to global intron retention, widespread defects in pre-mRNA maturation, and deregulation of many essential cell processes. Importantly, genetic or pharmacologic inhibition of the spliceosome in vivo impairs survival, tumorigenicity, and metastatic proclivity of MYC-dependent breast cancers. Collectively, these data suggest that oncogenic MYC confers a collateral stress on splicing and that components of the spliceosome may be therapeutic entry points for aggressive MYC-driven cancers. Overall design: Examination of intron rentention in MYC-ER HMECs, in 4 conditions
The spliceosome is a therapeutic vulnerability in MYC-driven cancer.
No sample metadata fields
View SamplesTo investigate the pathological effect of miR-126 on the progression of acute myeloid leukemia (AML) induced by AML1-ETO9a (AE9a), we conducted a series of mouse bone marrow transplantation (BMT) assays with the following groups: AE9a (primary donor cells were wild-type mouse bone marrow progenitor (i.e., lineage negative; Lin-) cells retrovirally transduced with MSCV-PIG-AE9a), AE9a+miR-126 (primary donor cells were wild-type mouse bone marrow progenitor (i.e., Lin-) cells retrovirally transduced with MSCV-PIG-AE9a-miR-126), and miR-126KO+AE9a (primary donor cells were miR-126 knockout mouse bone marrow progenitor (i.e., Lin-) cells retrovirally transduced with MSCV-PIG-AE9a), along with a control group (primary donor cells were wild-type mouse bone marrow progenitor (i.e., Lin-) cells retrovirally transduced with MSCV-PIG empty vector). The control group was only used in the primary and secondary BMT assays, whereas the three leukemic groups including AE9a, AE9a+miR-126 and miR-126KO+AE9a were used in four passages (i.e., primary, secondary, tertiary and quaternary) of BMT assays. Then, gene expression profiling was conducted with bone marrow samples collected from different groups to decipher the molecular mechanisms underlying miR-126 effects on leukemia initiation and progression and maintenance and self-renewal of leukemia stem/initiating cells.
Overexpression and knockout of miR-126 both promote leukemogenesis.
Specimen part
View SamplesWe have performed sucrose-gradient-based isolation of polysomal fractions from untreated and TGF-beta treated MCF-10A and MCF7 cells, subjected these fractions to RNA-seq, and also sequenced total mRNA from each cell line in the treated and untreated condition Overall design: Examination of two different cell types in a treated and untreated state
CELF1 is a central node in post-transcriptional regulatory programmes underlying EMT.
Specimen part, Treatment, Subject
View SamplesTo identify potential mRNA targets of FTO whose m6A levels are affected by FTO in acute myeloid leukemia (AML) cells, we conducted m6A-seq for messenger RNAs isolated from AML cells with and without forced expression of FTO. Overall design: We retrovirally transduced MSCV-PIG-FTO (i.e., human FTO) or MSCV-PIG (i.e., CTRL/Control) into human MONOMAC-6/t(9;11) AML cells and then selected individual stable clones under selection of puromuycin (0.5ug/ml). Four stable lines including two each FTO-overexpressing lines (i.e., FTO+ 1 and FTO+ 2; or FTO_1 and FTO_2) and control lines (i.e., WT 1 and WT 2; or Ctrl_1 and Ctrl_2) were selected for genome-wide m6A-sequencing (m6A-Seq) assays. The m6A-seq procedure was performed as detailed in Dominissini's method (Dominissini D., et al. Nat Protocols. 2013; 8: 176-189.). Polyadenylated RNA was extracted using FastTrack MAG Maxi mRNA isolation kit (Life technology). RNA fragmentation Reagents (Ambion) was used to randomly fragment RNA. M6A antibody (Synaptic Systems) was applied for m6A pull down. And final library preparation was constructed by TruSeq Stranded mRNA Sample Prep Kit (Illumina). Final library was quantified by BioAnalyzer High Sensitivity DNA chip then deeply sequenced on the Illumina HiSeq 2500.
FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N<sup>6</sup>-Methyladenosine RNA Demethylase.
No sample metadata fields
View SamplesTo identify the expression of mRNAs after knockdown of FTO, we performed RNA-Seq in MA9.3ITD cells with or without knockdown of FTO. Overall design: We lentivirally transduced pLKO.1-shFTO (i.e., shFTO) or pLKO.1 empty vertor (i.e., shNS) into human MA9.3ITD (human CD34+ hematopoietic stem/progenetor cells stably infected by MLL-AF9 and FLT3-ITD) AML cells and then selected positively infected cells under selection of puromuycin (0.5ug/ml). The knockdown efficiency was confirmed by qPCR and western. Two stable lines including one FTO-knockdown cell line (i.e., shFTO) and one control line (i.e., shNS) were selected for RNA-Seq. Polyadenylated RNA was extracted using FastTrack MAG Maxi mRNA isolation kit (Life technology). RNA fragmentation Reagents (Ambion) was used to randomly fragment RNA. And final library preparation was constructed by TruSeq Stranded mRNA Sample Prep Kit (Illumina). Final library was quantified by BioAnalyzer High Sensitivity DNA chip then deeply sequenced on the Illumina HiSeq 2500.
FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N<sup>6</sup>-Methyladenosine RNA Demethylase.
Specimen part, Cell line, Subject
View SamplesTo identify potential mRNA targets of FTO whose m6A levels are influenced in acute myeloid leukemia (AML) cells, we conducted m6A-seq for mRNA isolated from MA9.3ITD cells with and without knockdown of FTO Overall design: We lentivirally transduced pLKO.1-shFTO (i.e., shFTO) or pLKO.1 empty vertor (i.e., shNS) into human MA9.3ITD (human CD34+ hematopoietic stem/progenetor cells stably infected by MLL-AF9 and FLT3-ITD) AML cells and then selected positively infected cells under selection of puromuycin (0.5ug/ml). Two stable lines including one FTO-knockdown cell line (i.e., shFTO) and one control line (i.e., shNS) were selected for genome-wide m6A-sequencing (m6A-Seq) assays. The m6A-seq procedure was performed as detailed in Dominissini's method (Dominissini D., et al. Nat Protocols. 2013; 8: 176-189.). Polyadenylated RNA was extracted using FastTrack MAG Maxi mRNA isolation kit (Life technology). RNA fragmentation Reagents (Ambion) was used to randomly fragment RNA. M6A antibody (Synaptic Systems) was applied for m6A pull down. And final library preparation was constructed by TruSeq Stranded mRNA Sample Prep Kit (Illumina). Final library was quantified by BioAnalyzer High Sensitivity DNA chip then deeply sequenced on the Illumina HiSeq 2500.
FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N<sup>6</sup>-Methyladenosine RNA Demethylase.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
miR-196b directly targets both HOXA9/MEIS1 oncogenes and FAS tumour suppressor in MLL-rearranged leukaemia.
Specimen part, Disease
View SamplesTo identify such targets of leukemia-related miRNAs such as miR-196b, we conducted Affymetrix gene arrays of leukemic BM samples from 24 mice including 9 primary (including 3 each of negative control, MLL-AF9, and miR-196b+MLL-AF9) and 15 secondary (including 3 negative control, 6 MLL-AF9, and 6 miR-196b+MLL-AF9) recipient mice
miR-196b directly targets both HOXA9/MEIS1 oncogenes and FAS tumour suppressor in MLL-rearranged leukaemia.
Specimen part
View SamplesAnkrd11 is a potential chromatin regulator implicated in neural development and autism spectrum disorder (ASD) with no known function in the brain. Here, we show that knockdown of Ankrd11 in developing murine or human cortical neural precursors caused decreased proliferation, reduced neurogenesis, and aberrant neuronal positioning. Similar cellular phenotypes and aberrant ASD-like behaviors were observed in Yoda mice carrying a point mutation in the Ankrd11 HDAC-binding domain. Consistent with a role for Ankrd11 in histone acetylation, Ankrd11 was associated with chromatin, colocalized with HDAC3, and expression and histone acetylation of Ankrd11 target genes were altered in Yoda neural precursors. Moreover, the Ankrd11 knockdown-mediated decrease in precursor proliferation was rescued by inhibiting histone acetyltransferase activity or expressing HDAC3. Thus, Ankrd11 is a crucial epigenetic regulator of neural development that controls histone acetylation and gene expression, thereby providing a likely explanation for its association with cognitive dysfunction and ASD.
Ankrd11 is a chromatin regulator involved in autism that is essential for neural development.
Specimen part
View Samples