The undifferentiated spermatogonial population of mouse testis is known to be functionally heterogeneous and contain both stem cells and committed progenitor cells. However, gene expression patterns marking these distinct cell fractions are poorly defined. We found that a subset of undifferentiated spermatogonia were marked by expression of a PDX1-GFP transgene but properties of these cells were unclear. Undifferentiated cells were therefore isolated from adult testes and separated according to expression of PDX1-GFP+ for gene expression analysis by RNA-seq. Our goal was to identify differentially expressed genes from PDX1-GFP+ vs PDX1-GFP- with that of known markers of stem and committed progenitor cells. Overall design: 4 independent sets of PDX1-GFP-positive and PDX1-GFP-negative undifferentiated spermatogonia were isolated by flow sorting from adult mouse testes.
Identification of dynamic undifferentiated cell states within the male germline.
Specimen part, Subject
View SamplesRNA seqeuncing was performed to identifiy changes in genes expression and alternative splicing following SRSF3 depletion in pluripotent stem cells. Overall design: Induced pluripotent stem cells (iPSCs) generated from reprogrammable conditional SRSF3 knockout (SRSF3-KO/OKSM) mouse embryonic fibroblasts (MEFs) were induced for 24h to deplete SRSF3 and RNA seqeuncing was performed.
SRSF3 promotes pluripotency through <i>Nanog</i> mRNA export and coordination of the pluripotency gene expression program.
Specimen part, Subject
View SamplesConditional knockout of Snai1 in the mouse intestinal epithlium results in apoptotic loss of crypt base columnar cells and bias towards differentiation of secretory lineages. In vitro organoid cultures derived from Snail conditional knockout mice also undergo apoptosis when Snai1 is deleted.
Snai1 regulates cell lineage allocation and stem cell maintenance in the mouse intestinal epithelium.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A molecular roadmap of reprogramming somatic cells into iPS cells.
Specimen part, Time
View SamplesFactor induced reprogramming is a slow and inefficient process with only rare cells progressing towards induced pluripotent stem cells (iPSCs). Owing to these restraints, mechanistic studies have been limited to analyses of heterogeneous bulk populations undergoing reprogramming and partially reprogrammed cell lines. Here, by combining surface markers (Thy1, SSEA1) and an Oct4-GFP fluorescent reporter allele, we analyzed defined intermediate cell populations poised to becoming iPSCs at the transcriptional and epigenetic levels using genome-wide and single cell technologies. We found that factor-induced reprogramming elicits two discernible transcriptional waves that are characterized by the initial extinction of the somatic gene expression program and the concomitant acquisition of an ESC-like proliferative and metabolic state, followed by the activation of an embryonic pluripotent state primed for differentiation. The first wave is mostly driven by gene activation through c-Myc and gene repression by Klf4, whereas the second wave is a result of gradually activated Oct4/Sox2 targets in cooperation with Klf4 targets and other downstream regulators. While microRNA expression and enrichment for individual histone modifications (H3K4me3 or H3K27me3 enriched promoters) mirrored the observed biphasic transcriptional pattern, the establishment of bivalent domains (H3K4me3/H3K27me3 enriched promoters) occurred more gradually. In contrast, changes in DNA methylation took place predominantly at the end of reprogramming when cells assumed a stable pluripotent state. Cells that became refractory to reprogramming activated the first but failed to initiate the second transcriptional wave. However, introduction of additional copies of the reprogramming transgenes into these cells rescued their ability to form iPSCs, indicating that suboptimal transcription factor levels are a limiting factor for efficient iPSC formation. This integrative analysis allowed us to identify novel genes and microRNAs that enhance reprogramming and surface markers that further subdivide intermediate cell populations. Collectively, our data offer new mechanistic insights into the nature and sequence of molecular events inherent to cellular reprogramming and provide a valuable resource of molecules that may act as roadblocks during iPSC formation.
A molecular roadmap of reprogramming somatic cells into iPS cells.
No sample metadata fields
View SamplesExpression data from human induced pluripotent stem cells(iPSCs) and Human foreskin fibroblasts (HFFs) with treatment actinomycin D
Global analysis reveals multiple pathways for unique regulation of mRNA decay in induced pluripotent stem cells.
Specimen part, Treatment, Time
View SamplesPurpose: We performed a time-course single-cell RNA-seq of the somatic cells of the XX mouse gonads to study the cell population heterogeneity and the genetic program during their differentiation. Methods: We collected gonads from NR5A1-eGFP transgenic embryos at six embryonic stages: E10.5, E11.5, E12.5, E13.5, E16.5 and P6. Methods: Cells were capture with the C1 autoprep system and cDNA sequenced with Illumina HiSeq 2000. Results: One cell population was detected at E10.5 and give rise to both Granulosa and steroidogenic precursor cells. A precursor cell population remains undifferentiated at P6 and are likely to be theca cell precursors. Conclusion: Our study is, to date, the most granular transcriptomic study of the developing mouse ovary and provide a more complete model of somatic cell differentiation during female sex determination. Overall design: 663 cells were collected in total. 71 cells at E10.5, 106 cells at E11.5, 164 cells at E12.5, 106 cells at E13.5, 95 cells at E16.5, and 121 at P6. We performed two independent captures for each embryonic stage to reach a reasonable number of cells except for E10.5 where we capture enough cells in one experiment.
Dissecting Cell Lineage Specification and Sex Fate Determination in Gonadal Somatic Cells Using Single-Cell Transcriptomics.
Specimen part, Cell line, Subject
View SamplesOur study revealed that hypoxia inducible factor 2 alpha, Hif2 alpha, is a downstream target of estrogen signaling in mouse uterine stroma at the time of implantation. Further, conditional deletion of Hif2 alpha in mouse uterus leads to infertility due to impaired epithelial remodeling at the time of implantation.
A hypoxia-induced Rab pathway regulates embryo implantation by controlled trafficking of secretory granules.
Specimen part, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Polycomb repressive complex 2 is required for MLL-AF9 leukemia.
Specimen part, Disease, Disease stage
View SamplesThe Arabidopsis thaliana transcription factor LATERAL ORGAN BOUNDARIES (LOB) is expressed in the boundary between the shoot apical meristem and initiating lateral organs. To identify genes regulated by LOB activity, we used an inducible 35S:LOB-GR line. This analysis identified genes that are differentially expressed in response to ectopic LOB activity.
Arabidopsis lateral organ boundaries negatively regulates brassinosteroid accumulation to limit growth in organ boundaries.
Age, Specimen part, Treatment
View Samples