Diet-induced obesity (DIO) is rapidly becoming a global health problem, particularly as Westernization of emerging nations continues. Currently, one third of adult Americans are considered obese and, if current trends continue, >90% of US citizens are predicted to be affected by 2050. However, efforts to fight this epidemic have not yet produced sound solutions for prevention or treatment. Our studies reveal a balanced and chronobiological relationship between food consumption, daily variation in gut microbial evenness and function, basomedial hypothalamic circadian clock (CC) gene expression, and key hepatic metabolic regulatory networks , including CC and nuclear receptors (NR), that is are essential for metabolic homeostasis. Western diets high in saturated fats dramatically alter diurnal variation in microbial composition and function, which in turn lead to uncoupling of the hepatic CC and NR networks from central CC control in ways that offset the timing and types of regulatory factors directing metabolic function. These signals include microbial metabolites such as short chain fatty acids (SCFAs) and hydrogen sulfide (H2S) that can directly regulate or disrupt metabolic networks of the hepatocyte. Our study therefore provides insights into the complex and dynamic relationships between diet, gut microbes, and the host that are critical for maintenance of health. Perturbations of this constellation of processes, in this case by diet-induced dysbiosis and its metabolomic signaling, can potentially promote metabolic imbalances and disease. This knowledge opens up many possibilities for novel therapeutic and interventional strategies to treat and prevent DIO, ranging from the manipulation of gut microbial function to pharmacological targeting of host pathways to restore metabolic balance.
Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism.
Specimen part
View SamplesProstate cancer C4-2B cells were cultured in docetaxel in a dose-escalation manner. After nine months selection, cells were able to divide freely in 5 nM docetaxel, with a specific sets of genes been deregulated.
Inhibition of ABCB1 expression overcomes acquired docetaxel resistance in prostate cancer.
Cell line
View SamplesProstate cancer C4-2B cells were cultured in enzalutamide in a dose-escalation manner. After sixty passages cells were resistant to enzalutamide, with a specific sets of genes been deregulated.
Intracrine Androgens and AKR1C3 Activation Confer Resistance to Enzalutamide in Prostate Cancer.
Specimen part, Cell line
View SamplesThe ability to assign expression patterns to individual cell types that constitute a tissue is a major challenge in RNA expression analysis. This especially applies to brain given the plethora of different cells coexisting in that tissue. Here, we derived cell-type specific transcriptome signatures from existing single cell RNA data and integrated these signatures with a newly generated dataset of expression (bulk RNA-seq) of the postnatal developing hippocampus. This integrated analysis allowed us to provide a comprehensive and unbiased prediction of the differentiation drivers for 10 different hippocampal cell types and describe how the different cell types interact to support crucial developmental stages. Our integrated analysis provides a reliable resource of predicted differentiation drivers and insight into the multifaceted aspects of the cells in hippocampus during development. Overall design: 21 RNA-seq samples. For the stages E15, P1, P7, P15, and P30, there are respectively 3, 4, 3, 3, and 6 RNA-seq biological replica (total 19). One RNA-seq sample has two technical replica.
Integrated transcriptional analysis unveils the dynamics of cellular differentiation in the developing mouse hippocampus.
Specimen part, Cell line, Subject
View SamplesRemodeling of chromatin accessibility is necessary for successful reprogramming of fibroblasts to neurons. However, it is still not fully known which transcription factors can induce a neuronal chromatin accessibility profile when overexpressed in fibroblasts. To identify such transcription factors, we here used ATAC-sequencing to generate differential chromatin accessibility profiles between human fibroblasts and iNeurons, an in vitro neuronal model system obtained by overexpression of Neurog2 in induced pluripotent stem cells (iPSCs). We found that the ONECUT transcription factor sequence motif was strongly associated with differential chromatin accessibility between iNeurons and fibroblasts. All three ONECUT transcription factors associated with this motif (ONECUT1, ONECUT2 and ONECUT3) induced neuronal morphology and expression of neuronal genes within two days of overexpression in fibroblasts. We observed widespread remodeling of chromatin accessibility; in particular, we found that chromatin regions that contain the ONECUT motif were in- or lowly accessible in fibroblasts and became accessible after the overexpression of ONECUT1, ONECUT2 or ONECUT3. There was substantial overlap with iNeurons, still, many regions that gained accessibility following ONECUT overexpression were not accessible in iNeurons. Our study highlights the potential of ONECUT transcription factors for direct neuronal reprogramming. Overall design: Each RNA-Seq experiment was performed in duplicate (library constructed from different wells of the same cell line in the same cell culture experiment). Bclxl controls were generated for the overexpression. experiments.
ONECUT transcription factors induce neuronal characteristics and remodel chromatin accessibility.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
CSNK1a1 Regulates PRMT1 to Maintain the Progenitor State in Self-Renewing Somatic Tissue.
Specimen part, Treatment
View SamplesHere we determine the target gene sets controlled by PRMT1 or CSNK1a1 in maintaining the undifferentiated state of primary human keratinocytes.
CSNK1a1 Regulates PRMT1 to Maintain the Progenitor State in Self-Renewing Somatic Tissue.
Treatment
View SamplesIgE antibodies mediate the symptoms of allergic reactions, yet these antibodies and the cells that produce them remain enigmatic due to their scarcity in humans. To address this, we have isolated single B cells of all isotypes, including rare IgE producing B cells, from the peripheral blood of food allergic individuals. Using single cell RNA sequencing (scRNA-seq) we have characterized the gene expression, splicing, and heavy and light chain antibody sequences of these cells.
High-affinity allergen-specific human antibodies cloned from single IgE B cell transcriptomes.
Sex, Age, Specimen part, Disease
View SamplesTranscriptome analysis of Casz1 was performed using litters of postnatal day 2 retinas from crosses between Casz1Flox/Flox; R26-Stop-EYFP and Casz1Flox/Flox; IKCre-A; R26-Stop-EYFP. The IK-A Cre driver is described in Tarchini et al., Dev Dyn 241(12):1973-85. EYFP marks Cre expressing (and therefore cKO) cells. Cells were incubated for 30 min in RGM serum-free medium described in Cayouette et al., Neuron 40(5):897, supplemented with Hoechst 33342 (Invitrogen), and 4N cells were sorted using a MOFLO cytometer (Beckman) based on Hoechst, GFP expression, and propidium iodide exclusion. Overall design: Cells were sorted directly into lysis buffer on ice and RNA was immediately extracted using RNeasy mini columns (Qiagen). Two independent experiments were performed, and the RNA samples were processed in parallel. RNA amplification was performed using Truseq PE Cluster kit v3 PE50 (Illumina). Deep sequencing was performed using Truseq stranded mRNA (Illumina) with mRNA enrichment and strand-specific parameters, using a Hiseq 2000 instrument (Illumina).
Casz1 controls higher-order nuclear organization in rod photoreceptors.
Specimen part, Cell line, Subject
View SamplesGLUCOCORTICOIDS are steroid hormones that strongly influence intermediary carbohydrate metabolism by increasing the transcription rate of glucose-6-phosphatase (G6Pase) a key enzyme of gluconeogenesis, and suppress the immune system which makes them one of the most important therapeutic agents in the treatment of allergic, autoimmune and inflammatory diseases. The biologic actions of circulating glucocorticoids are transmitted to the cells nucleus by the glucocorticoid receptor (GR). The nuclear liver X receptors (LXRs) bind to cholesterol metabolites, heterodimerize with the retinoid X receptor (RXR), and regulate the cholesterol turnover, the hepatic glucose metabolism by decreasing the expression of G6Pase, and repress a set of inflammatory genes in immune cells. The aim of this study is to evaluate the crosstalk between the GR- and LXR-mediated signaling systems. Transient transfection-based reporter assays and gene silencing methods using siRNAs for LXRs showed that overexpression/ligand (GW3965) activation of LXRs/RXRs repressed GR-stimulated transactivation of certain glucocorticoid response element (GRE)-driven promoters in a gene-specific fashion. Activation of LXRs by GW3965 attenuated dexamethasone-stimulated elevation of circulating glucose in rats and suppressed dexamethasone-induced mRNA expression of hepatic glucose-6-phosphatase (G6Pase) in rats, mice and human hepatoma HepG2 cells. In microarray transcriptomic analysis of rat liver, GW3965 differentially regulated glucocorticoid-induced transcriptional activity of about 15% of endogenous glucocorticoid-responsive genes. Mechanistically, and in vitro chromatin immunoprecipitation assay, we found that LXR/RXR bound GREs and inhibited GR binding to these DNA sequences in a gene-specific fashion. These novel results were further confirmed in in vivo binding assays, and in gel mobility shift assays, where recombinant LXR/RXR proteins were used to examine their interaction with classic or G6Pase GREs. We propose that administration of LXR agonists may be beneficial in glucocorticoid treatment- or stress-associated dysmetabolic states by directly attenuating the transcriptional activity of the GR on glucose and/or lipid metabolism.
Liver x receptors regulate the transcriptional activity of the glucocorticoid receptor: implications for the carbohydrate metabolism.
Specimen part
View Samples