This SuperSeries is composed of the SubSeries listed below.
Effect of orally administered collagen hydrolysate on gene expression profiles in mouse skin: a DNA microarray analysis.
Sex, Age, Specimen part, Treatment
View SamplesDietary collagen hydrolysate has been conjectured to improve skin barrier function. To investigate the effect of long-term collagen hydrolysate administration on the skin, we evaluated stratum corneum water content and skin elasticity in intrinsic aged mice. Female 9-week-old hairless mice were fed a control diet, or a collagen hydrolysate-containing diet, for 12 weeks. The stratum corneum water content and skin elasticity were sequentially decreased by chronological aging in control mice. Intake of collagen hydrolysate significantly suppressed such changes. Moreover, we comprehensively analyzed gene expression in the skin of mouse, which had been administered collagen hydrolysate, using DNA microarray. Twelve weeks after start of collagen intake, no significant differences appeared in gene expression profile compared to that of control group. However, 12 weeks after administration, 135 genes were up-regulated and 448 genes were down-regulated in collagen group compared to control group. It is indicate that gene changes preceded changes of barrier function and elasticity. We focused on several genes correlated with functional changes in the skin. Gene Ontology terms, especially related to epidermal cell development, were signicantly enriched in up-regulated genes. These skin function-related genes had properties that facilitate epidermal production and differentiation and suppress dermal degradation. Thus, dietary collagen hydrolysate induced positive gene changes. In conclusion, our results suggest that alteration of gene expression at early stages after collagen administration affect skin barrier function and mechanical properties. Long-term oral intake of collagen hydrolysate improves skin dysfunction by regulating genes related to production and maintenance of the skin tissue.
Effect of orally administered collagen hydrolysate on gene expression profiles in mouse skin: a DNA microarray analysis.
Sex, Age, Specimen part, Treatment
View SamplesDietary collagen hydrolysate has been conjectured to improve skin barrier function. To investigate the effect of long-term collagen hydrolysate administration on the skin, we evaluated stratum corneum water content and skin elasticity in intrinsic aged mice. Female 9-week-old hairless mice were fed a control diet, or a collagen hydrolysate-containing diet, for 12 weeks. The stratum corneum water content and skin elasticity were sequentially decreased by chronological aging in control mice. Intake of collagen hydrolysate significantly suppressed such changes. Moreover, we comprehensively analyzed gene expression in the skin of mouse, which had been administered collagen hydrolysate, using DNA microarray. Twelve weeks after start of collagen intake, no significant differences appeared in gene expression profile compared to that of control group. However, 1 week after administration, 135 genes were up-regulated and 448 genes were down-regulated in collagen group compared to control group. It is indicate that gene changes preceded changes of barrier function and elasticity. We focused on several genes correlated with functional changes in the skin. Gene Ontology terms, especially related to epidermal cell development, were signicantly enriched in up-regulated genes. These skin function-related genes had properties that facilitate epidermal production and differentiation and suppress dermal degradation. Thus, dietary collagen hydrolysate induced positive gene changes. In conclusion, our results suggest that alteration of gene expression at early stages after collagen administration affect skin barrier function and mechanical properties. Long-term oral intake of collagen hydrolysate improves skin dysfunction by regulating genes related to production and maintenance of the skin tissue.
Effect of orally administered collagen hydrolysate on gene expression profiles in mouse skin: a DNA microarray analysis.
Sex, Age, Specimen part, Treatment
View SamplesHepatic iron overload is a risk factor for progression of hepatocellular carcinoma (HCC), although the molecular mechanisms underlying this association have remained unclear. We now show that the iron-sensing ubiquitin ligase FBXL5 is previously unrecognized oncosuppressor in liver carcinogenesis in mice. Hepatocellular iron overload evoked by FBXL5 ablation gives rise to oxidative stress, tissue damage, inflammation and compensatory proliferation in hepatocytes and to consequent promotion of liver carcinogenesis induced by exposure to a chemical carcinogen. The tumor-promoting effect of FBXL5 deficiency in the liver is also operative in a model of virus-induced HCC. FBXL5-deficient mice thus constitute the first genetically engineered mouse model of liver carcinogenesis induced by iron overload. Dysregulation of FBXL5-mediated cellular iron homeostasis was also found to be associated with poor prognosis in human HCC, implicating FBXL5 plays a significant role in defense against hepatocarcinogenesis. Overall design: Total RNA was extracted from the nontumor and tumor tissue of an Alb-Cre/Fbxl5F/F male mouse (nontumor, n = 5; tumor, n = 5) or two littermate control Fbxl5F/F mice (nontumor, n = 6; tumor, n = 6) at 45 weeks of age.
Disruption of FBXL5-mediated cellular iron homeostasis promotes liver carcinogenesis.
Specimen part, Cell line, Subject
View SamplesWe found that a number of Tfh cells downmodulated BCL6 protein after their development, and we sought to compare the gene expression between BCL6-hi Tfh cells and BCL6-low Tfh cells.
Bcl6 protein expression shapes pre-germinal center B cell dynamics and follicular helper T cell heterogeneity.
Specimen part
View SamplesWe searched for roles of ZEB1 during EMT by RNA-seq in breast cancer cells. Overall design: Expression of mRNA in a basal type breast cancer cell line MDA-231-D transfected with ZEB1/ZEB2 siRNAs and stimulated with TGF-beta for 24 h.
ZEB1-regulated inflammatory phenotype in breast cancer cells.
Specimen part, Cell line, Subject
View SamplesAngiogenesis in cultures of rat aorta begins with neovessels sprouting from the aortic explant within the first three days of culture.
Macrophage-derived tumor necrosis factor-alpha is an early component of the molecular cascade leading to angiogenesis in response to aortic injury.
Sex, Specimen part, Treatment
View SamplesAngiogenesis in collagen gel cultures of rat aorta begins with neovessels sprouting from the aortic explant within the first three days of culture.
Macrophage-derived tumor necrosis factor-alpha is an early component of the molecular cascade leading to angiogenesis in response to aortic injury.
Sex, Specimen part
View SamplesAire in medullary thymic epithelial cells plays an essential role in the negative selection through expression of broad arrays of tissue-restricted antigens.
Ectopic Aire Expression in the Thymic Cortex Reveals Inherent Properties of Aire as a Tolerogenic Factor within the Medulla.
Specimen part, Disease
View SamplesEVI1 is one of the famous poor prognostic markers for a chemotherapy-resistant acute myeloid leukemia (AML). To identify molecular targets on the surface of leukemia cells with EVI1high expression, we compared the gene expression profiles of several AML cell lines by DNA microarray
CD52 as a molecular target for immunotherapy to treat acute myeloid leukemia with high EVI1 expression.
Cell line
View Samples