The mechanisms underlying the progression of non-alcoholic steatohepatitis (NASH) are not completely elucidated. In this study we have integrated gene expression profiling of liver biopsies of NASH patients with translational studies in a mouse model of steatohepatitis and with pharmacological interventions in isolated hepatocytes to identify a novel mechanism implicated in the pathogenesis of NASH. By using high-density oligonucleotide microarray analysis we identified a significant enrichment of known genes involved in the multi-step catalysis of long chain polyunsaturated fatty acids, including delta-5 and 6 desaturases. A combined inhibitor of delta-5 and delta-6 desaturases significantly reduced intracellular lipid accumulation and inflammatory gene expression in isolated hepatocytes. Gas chromatography analysis revealed impaired delta-5 desaturase activity toward the omega-3 pathway in livers from mice with high-fat diet (HFD)-induced NASH. Consistently, restoration of omega-3 index in transgenic fat-1 mice expressing an omega-3 desaturase, which allows the endogenous conversion of omega-6 into omega-3 fatty acids, produced a significant reduction in hepatic insulin resistance, hepatic steatosis, macrophage infiltration and necroinflammatory liver injury, accompanied by attenuated expression of genes involved in inflammation, fatty acid uptake and lipogenesis. These results were comparable to those obtained in a group of mice receiving a HFD supplemented with EPA/DHA. Of interest, hepatocytes from fat-1 mice or supplemented with EPA exhibited synergistic anti-steatotic and anti-inflammatory actions with the delta-5/ delta-6 inhibitor. Conclusion: These findings indicate that both endogenous and exogenous restoration of the hepatic balance between omega-6 and omega-3 fatty acids and/or modulation of desaturase activities exert preventive actions in NASH.
Molecular interplay between Δ5/Δ6 desaturases and long-chain fatty acids in the pathogenesis of non-alcoholic steatohepatitis.
Specimen part, Disease, Disease stage
View SamplesThis SuperSeries is composed of the SubSeries listed below.
dKDM5/LID regulates H3K4me3 dynamics at the transcription-start site (TSS) of actively transcribed developmental genes.
Specimen part
View SamplesH3K4me3 is a histone modification related to gene activation. LID is a demethylase acting on this residue and therefore, it could be important for proper expression of genes in Drosophila developing tissues, such as wing imaginal discs
dKDM5/LID regulates H3K4me3 dynamics at the transcription-start site (TSS) of actively transcribed developmental genes.
No sample metadata fields
View SamplesHepatic iron overload is a risk factor for progression of hepatocellular carcinoma (HCC), although the molecular mechanisms underlying this association have remained unclear. We now show that the iron-sensing ubiquitin ligase FBXL5 is previously unrecognized oncosuppressor in liver carcinogenesis in mice. Hepatocellular iron overload evoked by FBXL5 ablation gives rise to oxidative stress, tissue damage, inflammation and compensatory proliferation in hepatocytes and to consequent promotion of liver carcinogenesis induced by exposure to a chemical carcinogen. The tumor-promoting effect of FBXL5 deficiency in the liver is also operative in a model of virus-induced HCC. FBXL5-deficient mice thus constitute the first genetically engineered mouse model of liver carcinogenesis induced by iron overload. Dysregulation of FBXL5-mediated cellular iron homeostasis was also found to be associated with poor prognosis in human HCC, implicating FBXL5 plays a significant role in defense against hepatocarcinogenesis. Overall design: Total RNA was extracted from the nontumor and tumor tissue of an Alb-Cre/Fbxl5F/F male mouse (nontumor, n = 5; tumor, n = 5) or two littermate control Fbxl5F/F mice (nontumor, n = 6; tumor, n = 6) at 45 weeks of age.
Disruption of FBXL5-mediated cellular iron homeostasis promotes liver carcinogenesis.
Specimen part, Cell line, Subject
View SamplesYeast lacking the H3 or H4 amino termini, and corresponding wild type strains, were grown in synthetic media. These conditions induce Gcn4-activated transcription.
Contribution of the histone H3 and H4 amino termini to Gcn4p- and Gcn5p-mediated transcription in yeast.
No sample metadata fields
View SamplesAbf1 and Rap1 are General Regulatory Factors that contribute to transcriptional activation of a large number of genes, as well as to replication, silencing, and telomere structure in yeast. In spite of their widespread roles in transcription, the scope of their functional targets genome-wide has not been previously determined. We have used microarrays to examine the contribution of these essential GRFs to transcription genome-wide, by using ts mutants that dissociate from their binding sites at 37 C. We combined this data with published ChIP-chip studies and motif analysis to identify probable direct targets for Abf1 and Rap1. We also identified a substantial number of genes likely to bind Rap1 or Abf1, but not affected by loss of GRF binding. Interestingly, the results strongly suggest that Rap1 can contribute to gene activation from farther upstream than can Abf1. Also, consistent with previous work, more genes that bind Abf1 are unaffected by loss of binding than those that bind Rap1. Finally, we showed for several such genes that the Abf1 C-terminal region, which contains the putative activation domain, is not needed to confer this peculiar "memory effect" that allows continued transcription after loss of Abf1 binding.
Genome-wide analysis of transcriptional dependence and probable target sites for Abf1 and Rap1 in Saccharomyces cerevisiae.
No sample metadata fields
View SamplesSignal intensity data for rpd3 delete, H3delta(1-28), H3(K4,9,14,18,23,27Q), H4delta(2-26), H4(K5,8,12,16Q), rpd3 delete H3delta(1-28), and rpd3 delete H4(K5,8,12,16Q) yeast grown in rich (YPD) media
Genome-wide analysis of the relationship between transcriptional regulation by Rpd3p and the histone H3 and H4 amino termini in budding yeast.
No sample metadata fields
View SamplesDifferential gene expression between groups of homogenous cell types is a biological question whose time has come. RNA can be extracted from small numbers of cells, such as those isolated by laser capture microdissection, but the small amounts obtained often require amplification to enable whole genome transcriptome profiling by technologies such as microarray analysis and RNA-seq. Recently, advances in amplification procedures make amplification directly from whole cell lysates possible. The aim of this study was to compare two amplification systems for variations in observed RNA abundance attributable to the amplification procedure for use with small quantities of cells isolated by laser capture microdissection. Arabidopsis root cells undergoing giant cell formation due to nematode infestation and un-infested control root cells were laser captured and used to evaluate 2 amplification systems. One, NuGEN's WT-Ovation Pico amplification system, uses total RNA as starting material while the other, NuGEN's WT-One-Direct Amplification system, uses lysate containing the captured cells. The reproducibility of whole genome transcript profiling and correlations of both systems were investigated after microarray analysis. The NuGEN WT-Ovation One-Direct system was less reproducible and more variable than the NuGEN WT-Ovation Pico system. The NuGEN WT-Ovation Pico Amplification kit resulted in the detection of thousands of genes differentially expressed genes between giant cells and control cells. This is in marked contrast to the relatively few genes detected after amplification with the NuGEN WT-Ovation One-Direct Amplification kit.
Comparison between NuGEN's WT-Ovation Pico and one-direct amplification systems.
Specimen part, Time
View SamplesFzd2 is a Wnt receptor expressed in the embryonic lung. We made a conditional knockout of Fzd2 to specifically address the role of signaling through Fzd2 in lung epithelial development.
Wnt ligand/Frizzled 2 receptor signaling regulates tube shape and branch-point formation in the lung through control of epithelial cell shape.
Specimen part
View SamplesWe analysed the genexpression of dental follicle cells (DFCs) after 3 days osteogenic differentiation with BMP2 after transfection with a DLX3 plasmid (pDLX3) and after transfection with an empty plasmid (pEV)
A protein kinase A (PKA)/β-catenin pathway sustains the BMP2/DLX3-induced osteogenic differentiation in dental follicle cells (DFCs).
Specimen part
View Samples