Dietary polyunsaturated fatty acids (PUFA) act as potent natural hypolipidemics and are linked to many health benefits in humans and in animal models. Mice fed long-term a high fat diet, in which medium-chain alpha linoleic acid (ALA) was partially replaced by long-chain docosahexaenoic (DHA) and eicosapentaenoic (EPA) fatty acids, showed reduced accumulation of body fat and prevention of insulin resistance, besides increased mitochondrial beta-oxidation in white adipose tissue and decreased plasma lipids. ALA, EPA and DHA all belong to PUFA of n-3 series. The intestine is a gatekeeper organ for ingested lipids. To examine the potential contribution of the intestine in the beneficial effects of EPA and DHA, this study assessed gene expression changes using whole genome microarray analysis on small intestinal scrapings. The main biological process affected was lipid metabolism. Fatty acid uptake, peroxisomal and mitochondrial beta-oxidation, and omega-oxidation of fatty acids were all increased. Quantitative real time PCR and intestinal fatty acid oxidation measurements ([14C(U)]-palmitate) confirmed significant gene expression differences in a dose-dependent manner. Furthermore, no major changes in the expression of lipid metabolism genes were observed in colonic scrapings. In conclusion, we show that marine n-3 fatty acids regulate small intestinal gene expression patterns. Since this organ contributes significantly to whole organism energy use, this adaptation of the small intestine may contribute to the complex and observed beneficial physiological effects of these natural compounds under conditions that will normally lead to development of obesity and diabetes.
Induction of lipid oxidation by polyunsaturated fatty acids of marine origin in small intestine of mice fed a high-fat diet.
No sample metadata fields
View SamplesRNA-Seq analysis of Treg cell subsets isolated from lungs of Il10GFPFoxp3Thy1.1 mice. Thy1.1+ Treg cells were FACS-sorted into IL-10–IL-18R–, IL-10+IL-18R– and IL10–IL-18R+ populations on day 5 following intranasal infection with 0.5 LD50 PR8-OTI influenza virus. Overall design: mRNA profiles of each Thy1.1+ Treg cell population (IL-10–IL-18R–, IL-10+IL-18R– and IL10–IL-18R+) from lungs on day 5 following influenza infection from 5 infected mice, sorted into TRIzol LS reagent.
A Distinct Function of Regulatory T Cells in Tissue Protection.
No sample metadata fields
View SamplesWith the aim of understanding how Treg cells in highly vascularized tissues are related to Treg cells in other organs, we performed RNA-seq analysis of bulk Treg and Tconv cells isolated from liver, blood, spleen, and the liver-draining portal lymph node. This revealed a clear separation of cell transcriptomes by both tissue and Treg/Tconv identity, with cells from the liver falling between blood- and spleen-derived cells. Compared to splenic Treg cells, hepatic Treg cells were enriched for genes related to proliferation and activation, and genes encoding chemokine and cytokine receptors. Overall design: RNA was extracted from FACS-purified Tconv and Treg cells from various tissues of Foxp3Thy1.1 mice. Each sample contains cells pooled from 3 mice. 2 cell types from each of 4 tissues x 3 replicates = 24 samples.
CD49b defines functionally mature Treg cells that survey skin and vascular tissues.
Sex, Age, Specimen part, Cell line, Subject
View SamplesWhile unique subsets of Treg cells have been described in some non-lymphoid tissues, their relationship to Treg cells in secondary lymphoid organs and circulation remains unclear. We have identified a recirculating and highly suppressive effector Treg cell subset that expresses the a2 integrin, CD49b, and exhibits a unique tissue distribution. To identify genes and pathways enriched in CD49b+ Treg cells, we performed RNA-seq of splenic CD49b+ and CD49b- Treg cells that were of otherwise similar activation status based on expression of CD44 and CD62L. This revealed that splenic CD49b+ Treg cells express genes related to migration and activation, but are relatively depleted of genes whose expression is TCR-dependent in Treg cells. These results shed light on the identity and development of a functionally potent subset of mature effector Treg cells that recirculates through and surveys peripheral tissues. Overall design: RNA was extracted from FACS-purified splenic Tconv and Treg cells of different activation states from Foxp3GFP mice. 2 CD4+ T-cell lineages x 3 activation states x 4 replicates. There is no sample 3 (RNA was degraded); there are 23 samples in total.
CD49b defines functionally mature Treg cells that survey skin and vascular tissues.
Sex, Age, Specimen part, Cell line, Subject
View SamplesWhile unique subsets of Treg cells have been described in some non-lymphoid tissues, their relationship to Treg cells in secondary lymphoid organs and circulation remains unclear. We have identified a short-lived effector Treg cell subset that expresses the a2 integrin, CD49b, and exhibits a unique tissue distribution. Projection of the CD49b+ Treg signature onto the Treg phenotypic landscape as inferred by single-cell RNA-seq analysis, placed these cells at the apex of the Treg developmental trajectory. These results shed light on the identity and development of a functionally potent subset of mature effector Treg cells that recirculate through and survey peripheral tissues. Overall design: Single-cell RNA-seq libraries (10x Genomics) were prepared from FACS-purified Tconv and Treg cells from pooled spleens of Foxp3GFP mice.
CD49b defines functionally mature Treg cells that survey skin and vascular tissues.
Sex, Age, Specimen part, Subject
View SamplesThymic Treg cells, mature non-Treg CD4+ single positive thymocytes, peripheral (spleen) resting and activated Treg cells were sorted from Foxp3-gfp reporter (wid type, WT) mice or Foxp3 enhancer CNS3 knockout (KO, carrying the same GFP reporter) mice. Total RNA was extracted and used for RNA sequencing to assess gene expression profiles. Overall design: Two 6-8 week old littermates of male Foxp3-gfp and Foxp3?CNS3-gfp mice were used to sort Treg cells and conventional CD4+ T cells. Lymphocyte preparation and electronic sorting were performed at the same time. RNA extraction, SMART amplification, library preparation were conducted in parallel.
A mechanism for expansion of regulatory T-cell repertoire and its role in self-tolerance.
No sample metadata fields
View SamplesHuman mesenchymal stem cells (hMSCs) were transduced using lentivirus containing the the triple fusion reporter gene fluc-mrfp-ttk. Microarray studies of hMSCs after transduction with the triple reporter genes using lentivirus were performed to study the effects of transduction on stem cell properties using an oligonucleotide human microarray. Transduced cells were sorted by FACS. Cells with high and low signals were ftacrtionated, and gene expression profiles were determined.
Transcriptional profiling of human mesenchymal stem cells transduced with reporter genes for imaging.
No sample metadata fields
View SamplesThere is differential expression of genes between cases and controls using microarray analysis, and genes that are crucial for host defence responses are significantly up-regulated in cases during pneumococcal infection.
Peripheral blood RNA gene expression in children with pneumococcal meningitis: a prospective case-control study.
Specimen part, Disease, Disease stage
View SamplesPurpose: Tracheal epithelial brush cells are rare chemosensory cells defined by their expression of elements of the bitter taste transduction system, and known to activate the cholinergic nervous system in the murine lung. Similar chemosensory cells in the intestine can generate lipid mediators and pro-inflammatory cytokines but whether brush cell can contribute to airway inflammation is unknown. Furthermore, despite the advances in understanding chemosensory cell effector functions, the receptors that mediate chemosensory cell activation and expansion beyond taste receptors in any compartment remain largely unknown. Methods: In this study, we isolated tracheal brush cells by FACS from naïve ChATBAC-eGFP mice with knockin of eGFP within a BAC spanning the acetylcholine transferase locus, marking brush cells in the epithelium and performed transcriptome profiling using low input RNA sequencing. We compared tracheal brush cells to EpCAM+ epithelial cells and CD45+ hematopoetic cells in naive mice. Results: When compared to EpCAM+ EpCs and to CD45+ cells in the airway, principal component analysis demonstrated that brush cells grouped quite distinctly. This brush cell distinction relative to EpCAM+ cells, was further reflected in the striking number of highly differentially expressed genes. This included 1305 genes expressed at 4-fold or higher levels in EpCAM+eGFP+ cells (brush cells), of which 418 genes were expressed at 32-fold or higher levels in brush cells. Conclusions: Our study represents the first detailed analysis of the transcriptome of tracheal brush cells and identifies a unique set of genes that are primarily expressed in brush cells including the bitter taste transduction system, synthenic machinery for several pro-inflammatory lipid mediators and HoxA2 transciptional factors. Overall design: Examination of gene expression of tracheal brush cells (ChAT-eGFP), EpCAM+ (EpCAM) tracheal epithelial cell and CD45+ hematopoetic cells in naïve mice.
The cysteinyl leukotriene 3 receptor regulates expansion of IL-25-producing airway brush cells leading to type 2 inflammation.
Specimen part, Cell line, Subject
View SamplesMutations in the CLN3 gene lead to juvenile neuronal ceroid lipofuscinosis, a pediatric neurodegenerative disorder characterized by visual loss, epilepsy and psychomotor deterioration. Although most CLN3 patients carry the same 1 kb deletion in the CLN3 gene, their disease phenotype can be variable. The aims of this study were (1) to identify genes that are dysregulated in CLN3 disease regardless of the clinical course that could be useful as biomarkers, and (2) to find modifier genes that affect the progression rate of the disease.
Analysis of potential biomarkers and modifier genes affecting the clinical course of CLN3 disease.
Sex, Age, Specimen part, Disease, Disease stage
View Samples