DNA methylation has been considered to play an important role during myogenic differentiation. In terminal differentiation of myoblasts, chronological alteration of DNA methylation status was poorly understood. Using Infinium HumanMethylation450 BeadChips, we validated genome wide DNA methylation profiles of human myoblast differentiation models. To investigate correlation between DNA methylation and gene expression, we also assessed gene expression of myoblasts with GeneChip Human Genome U133 Plus 2.0 array.
DNA methylation analysis of human myoblasts during in vitro myogenic differentiation: de novo methylation of promoters of muscle-related genes and its involvement in transcriptional down-regulation.
Sex, Age, Race
View SamplesEndurance-trained athletes have high oxidative capacity, enhanced insulin sensitivity, and high intracellular lipid accumulation in muscle. These characteristics are likely due to altered gene expression levels in muscle.
Endurance Runners with Intramyocellular Lipid Accumulation and High Insulin Sensitivity Have Enhanced Expression of Genes Related to Lipid Metabolism in Muscle.
Sex, Specimen part
View SamplesTransforming growth factor (TGF)- plays crucial roles in embryonic development and adult tissue homeostasis by eliciting various cellular responses in target cells. TGF- signaling is principally mediated through receptor-activated Smad proteins, which regulate expression of target genes in cooperation with other DNA-binding transcriptionfactors (Smad cofactors). In this study, we found that the basic helix-loop-helix transcription factor Olig1 is a Smad cofactor involved in TGF-b-induced cell motility. Knockdown of Olig1 attenuated TGF--induced cell motility in chamber migration and wound healing assays. In contrast, Olig1 knockdown had no effect on bone morphogenetic protein-induced cell motility, TGF--induced cytostasis or epithelial-mesenchymal transition. Furthermore, we observed that cooperation of Smad2/3 with Olig1 is regulated by a peptidyl-prolyl cis/trans isomerase, Pin1. TGF-b-induced cell motility, induction of Olig1-regulated genes, and physical interaction between Smad2/3 and Olig1 were all inhibited after knockdown of Pin1, indicating a novel mode of regulation of Smad signaling. We also found that Olig1 interacts with the L3 loop of Smad3. Using a synthetic peptide corresponding to the L3 loop of Smad3, we succeeded in selectively inhibiting TGF-b-induced cell motility. These findings may lead to a new strategy for selective regulation of TGF-b-induced cellular responses.
Oligodendrocyte transcription factor 1 (Olig1) is a Smad cofactor involved in cell motility induced by transforming growth factor-β.
Specimen part
View SamplesDuring pregnancy, pancreatic islets undergo structural and functional changes that lead to enhance insulin release in response to increased insulin demand, which is rapidly reversed at parturition. One of the most important changes is expansion of pancreatic -cell mass mainly by increased proliferation of cells.
Serotonin regulates pancreatic beta cell mass during pregnancy.
Specimen part, Time
View SamplesRetinoic acid (RA) signaling regulates a variety of developmental processes through controlling the expression of numerous genes. Here, we have identified and characterized RA-responsive genes in mouse kidney development. Analysis of isolated embryonic kidneys cultured in the presence and absence of RA identified 33 candidates of RA-responsive genes. Most of these candidate genes were down-regulated by treatment with the RA receptor antagonist. Many of them have potential binding sites for Elf5, one of the RA-responsive genes, in their promoter region. Whole-mount in situ hybridization demonstrated that specific expression of Elf5 in the ureteric trunk depends on RA. RA-dependent expression in the ureteric trunk was also demonstrated for the sodium channel subunit Scnn1b, which has been shown to be the marker gene of the collecting duct. In contrast, the expression of Ecm1, Tnfsf13b and IL-33 was detected in the stromal mesenchymal cells. Both Tnfsf13b and IL-33 were previously shown to cause NF-B activation. We have demonstrated that the inhibition of NF-B signaling with specific inhibitors suppresses branching morphogenesis of the ureteric bud. Our study thus identifies and characterizes RA-dependent upregulated genes in kidney development, and suggests an involvement of NF-B signaling in the branching morphogenesis.
Identification and characterization of retinoic acid-responsive genes in mouse kidney development.
Specimen part
View SamplesTriple-negative breast cancer (TNBC) is defined by the absence of estrogen and progesterone receptors and human epidermal growth factor receptor 2, and is the most lethal and aggressive subtype of breast cancer. However, the genes which relate to promote tumor aggressiveness in TNBC remain unclear.
Molecular hierarchy of heparin-binding EGF-like growth factor-regulated angiogenesis in triple-negative breast cancer.
Sex, Specimen part, Disease, Disease stage, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The atypical mitogen-activated protein kinase ERK3 is essential for establishment of epithelial architecture.
Specimen part, Treatment
View SamplesEstablishment and maintenance of epithelial architecture are essential for embryonic development and adult physiology. Here, we show that ERK3, a poorly characterized atypical MAPK, regulates epithelial architecture in vertebrates. In Xenopus embryonic epidermal epithelia, ERK3 knockdown impairs adherens and tight junction protein distribution, as well as tight junction barrier function, resulting in epidermal breakdown. Moreover, in human breast epithelial cancer cells, inhibition of ERK3 expression induces thickened epithelia with aberrant adherens and tight junctions. Microarray results suggest an involvement of TFAP2A, a transcription factor important for epithelial gene expression, in ERK3-dependent gene expression changes. TFAP2A knockdown phenocopies ERK3 knockdown in both Xenopus embryos and human cells, and ERK3 is required for full activation of TFAP2A-dependent transcription. Our findings thus reveal that ERK3 regulates epithelial architecture, possibly in cooperation with TFAP2A.
The atypical mitogen-activated protein kinase ERK3 is essential for establishment of epithelial architecture.
Specimen part, Treatment
View SamplesEstablishment and maintenance of epithelial architecture are essential for embryonic development and adult physiology. Here, we show that ERK3, a poorly characterized atypical MAPK, regulates epithelial architecture in vertebrates. In Xenopus embryonic epidermal epithelia, ERK3 knockdown impairs adherens and tight junction protein distribution, as well as tight junction barrier function, resulting in epidermal breakdown. Moreover, in human breast epithelial cancer cells, inhibition of ERK3 expression induces thickened epithelia with aberrant adherens and tight junctions. Microarray results suggest an involvement of TFAP2A, a transcription factor important for epithelial gene expression, in ERK3-dependent gene expression changes. TFAP2A knockdown phenocopies ERK3 knockdown in both Xenopus embryos and human cells, and ERK3 is required for full activation of TFAP2A-dependent transcription. Our findings thus reveal that ERK3 regulates epithelial architecture, possibly in cooperation with TFAP2A.
The atypical mitogen-activated protein kinase ERK3 is essential for establishment of epithelial architecture.
Specimen part, Treatment
View SamplesCells that have been pre-exposed to mild stress (priming stress) acquire transient resistance to subsequent severe stress even under different combinations of stresses. This phenomenon is called cross-tolerance. Although it has been reported that cross-tolerance occurs in many organisms, the molecular basis is not clear yet. Here, we identified slm9+ as a responsible gene for the cross-tolerance in the fission yeast Schizosaccharomyces pombe. Slm9 is a homolog of mammalian HIRA histone chaperone. HIRA forms a conserved complex and gene disruption of other HIRA complex components, Hip1, Hip3, and Hip4, also yielded a cross-tolerance-defective phenotype, indicating that the fission yeast HIRA is involved in the cross-tolerance as a complex. We also revealed that Slm9 was recruited to the stress-responsive gene loci upon stress treatment in an Atf1-dependent manner. The expression of stress-responsive genes under stress conditions was compromised in HIRA disruptants. Consistent with this, Pol II recruitment and nucleosome eviction at these gene loci were impaired in slm9D cells. Furthermore, we found that the priming stress enhanced the expression of stress-responsive genes in wild-type cells that were exposed to the severe stress. These observations suggest that HIRA functions in stress response through transcriptional regulation.
HIRA, a conserved histone chaperone, plays an essential role in low-dose stress response via transcriptional stimulation in fission yeast.
No sample metadata fields
View Samples