Objective: Transcriptional profiling of murine HSPC in response to ß-glucan-induced innate immune training Overall design: HSPC mRNA profiles of wild type (WT) mice injected with PBS or ß-glucan. Wild type (WT) C57BL/6 mice were intraperitoneally injected with PBS or 1 mg ß-glucan in PBS. Mice were sacrificed on day 7 or day 28 and long-term heematopoietic stem cells (LT-HSC) and/or multipotent progenitors (MPP) were sorted. In another group, mice were injected with PBS or 1 mg ß-glucan in PBS and on day 7 they were additionally injected with 150 mg/kg 5-fluouracil. Mice were sacrificed on day 14 after 5-FU administration and LT-HSC were sorted.
Modulation of Myelopoiesis Progenitors Is an Integral Component of Trained Immunity.
Age, Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Dual role of FoxA1 in androgen receptor binding to chromatin, androgen signalling and prostate cancer.
Specimen part, Cell line
View SamplesWe report the dual role of FoxA1 in androgen receptor recruitment to the chromatin of androgen responsive prostate cancer cell line LNCaP-1F5 using ChIP-sequencing. Depletion of FoxA1 reprograms both androgen and glucocorticoid receptor recruitment and subsequent gene expression. The ChIP-seq has been performed using AR, FoxA1, GR, H3K4me2 antibodies. We have also mapped the DNaseI-hypersensitive sites (DHS) using deep sequencing.
Dual role of FoxA1 in androgen receptor binding to chromatin, androgen signalling and prostate cancer.
Cell line
View SamplesTranscription factor Stat5 is constitutively active in human prostate cancer but not in normal prostate epithelium. Stat5 activation is associated with prostate cancer lesions of high histological grades, and is present in the majority of castration-resistant recurrent human prostate cancers. The molecular mechnisms underlying constitutive activation of Stat5 in primary and recurrent human prostate cancer are currently unclear.
Stat5 promotes metastatic behavior of human prostate cancer cells in vitro and in vivo.
Specimen part, Cell line
View SamplesThe glycopeptide antibiotic vancomycin (VCM) represents one of the last lines of defense against methicillin-resistant Staphylococcus aureus infections. However, vancomycin is nephrotoxic, but the mechanism of toxicity is still unclear.
Gene expression analysis reveals new possible mechanisms of vancomycin-induced nephrotoxicity and identifies gene markers candidates.
Specimen part
View SamplesWe used microarrays to detail the global programme of gene expression after knockdown of Ecdysoneless in hMECs
The cell cycle regulator ecdysoneless cooperates with H-Ras to promote oncogenic transformation of human mammary epithelial cells.
Specimen part, Cell line
View SamplesBreast cancers with HER2 overexpression are sensitive to drugs targeting the receptor or its kinase activity. HER2-targeting drugs are initially effective against HER2- positive breast cancer, but resistance inevitably occurs. We previously found that nuclear factor kappa B is hyper-activated in the subset of HER-2 positive breast cancer cells and tissue specimens. In this study, we report that constitutively active NF-B rendered HER2-positive cancer cells resistant to anti-HER2 drugs, and cells selected for Lapatinib resistance up-regulated NF-B. In both circumstances, cells were anti-apoptotic and grew rapidly as xenografts. Lapatinib-resistant cells were refractory to HER2 and NF-B inhibitors alone but were sensitive to their combination, suggesting a novel therapeutic strategy. A subset of NF-B-responsive genes was overexpressed in HER2-positive and triple-negative breast cancers, and patients with this NF-B signature had poor clinical outcome. Anti-HER2 drug resistance may be a consequence of NF-B activation, and selection for resistance results in NF-B activation, suggesting this transcription factor is central to oncogenesis and drug resistance. Clinically, the combined targeting of HER2 and NF-B suggests a potential treatment paradigm for patients who relapse after anti-HER2 therapy. Patients with these cancers may be treated by simultaneously suppressing HER2 signaling and NF-B activation.
NF-κB activation-induced anti-apoptosis renders HER2-positive cells drug resistant and accelerates tumor growth.
Specimen part
View SamplesPrimary T cell activation involves the integration of three distinct signals delivered in sequence: 1) antigen recognition, 2) costimulation, and 3) cytokine-mediated differentiation and expansion. Strong immunostimulatory events such as immunotherapy or infection induce profound cytokine release causing bystander T cell activation, thereby increasing the potential for autoreactivity and need for control. We show that during strong stimulation, a profound suppression of primary CD4+ T cell-mediated immune responses ensued and was observed across preclinical models and patients undergoing high-dose interleukin-2 (IL-2) therapy. This suppression targeted nave CD4+ but not CD8+ T cells and was mediated through transient suppressor of cytokine signaling-3 (SOCS3) inhibition of the STAT5b transcription factor signaling pathway. These events resulted in complete paralysis of primary CD4+ T cell activation affecting memory generation, induction of autoimmunity, as well as impaired viral clearance. These data highlight the critical regulation of nave CD4+ T cells during inflammatory conditions.
Out-of-Sequence Signal 3 Paralyzes Primary CD4(+) T-Cell-Dependent Immunity.
Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
S-adenosylmethionine levels regulate the schwann cell DNA methylome.
Specimen part, Treatment
View SamplesIn this study we have analyzed the global gene expression of nave mouse embryonic stem cells in different culture conditions including R2i (PD0325901+SB431542), 2i (PD0325901+CHIR99021), and also PD0325901+LIF and SB431542+LIF to show the similarities and differences between the conditions in maintaining pluripotency.
Inhibition of TGFβ signaling promotes ground state pluripotency.
Specimen part, Cell line
View Samples