RNAPII pausing/termination shortly after initiation is a hallmark of gene regulation. However, the molecular mechanisms involved are still to be uncovered. Here, we show that NELF interacts with Integrator complex subunits (INTScom) forming a stable complex with RNPII and Spt5. The interaction between NELF and INTScom subunits is RNA and DNA independent. Using both HIV-1 promoter and genome wide analyses, we demonstrate that Integrator subunits specifically control NELF-mediated RNAPII pause/release at coding genes. The strength of RNAPII pausing is determined by the nature of the NELF-associated complex. Interestingly, in addition to controlling RNAPII pause release INTS11 catalytic subunit of the INTScom is required for the synthesis of full length mRNA. Finally, INTScom-target genes are enriched in HIV-1 TAR/ NELF-binding element and in a 3'box sequence required for snRNA biogenesis. Revealing these unexpected functions of INTScom in regulating RNAPII pausing/release and completion of mRNA synthesis of NELF-target genes will contribute to our understanding of the gene expression cycle. Overall design: Genome-wide expression in HeLa cells in the absence of Integrator 11, or NELF or mock (control) depleted by strand-specific RNASeq (Illumina)
Integrator complex regulates NELF-mediated RNA polymerase II pause/release and processivity at coding genes.
No sample metadata fields
View SamplesLongitudinal analysis of monocyte gene expressions patterns before and after cessation of HAART: understanding the impact of HIV viremia on the monocyte tranascritome. We used microarrays to detail the global program of gene expression underlying defects in monocytes from HIV infected patients during viremia..
Diminished production of monocyte proinflammatory cytokines during human immunodeficiency virus viremia is mediated by type I interferons.
No sample metadata fields
View SamplesHigh serum concentrations of kidney-derived protein uromodulin (Tamm-Horsfall protein or THP) have recently been shown to be independently associated with low mortality in both older adults and cardiac patients, but the underlying mechanism remains unclear. Here, we show that THP inhibits the generation of reactive oxygen species (ROS) both in the kidney and systemically. Consistent with this experimental data, the concentration of circulating THP in patients with surgery-induced acute kidney injury (AKI) correlated with systemic oxidative damage. THP in the serum dropped after AKI, and was associated with an increase in systemic ROS. The increase in oxidant injury correlated with post-surgical mortality and need for dialysis. Mechanistically, THP inhibited the activation of the TRPM2 channel. Furthermore, inhibition of TRPM2 in vivo in a mouse model, mitigated the systemic increase in ROS during AKI and THP deficiency. Our results suggest that THP is a key regulator of systemic oxidative stress by suppressing TRPM2 activity and our findings might help to explain how circulating THP deficiency is linked with poor outcomes and increased mortality.
Circulating uromodulin inhibits systemic oxidative stress by inactivating the TRPM2 channel.
Specimen part
View SamplesThe Drosophila insulator-binding proteins (IBPs) dCTCF/Beaf32 mark the physical borders of chromosomal domains involving co-factors that participate in long-range interactions. Chromosomal borders are further enriched in specific histone modifications yet the implication of histone modifiers and nucleosome dynamics remains largely unknown in such context. Here, we show that IBP depletion impairs nucleosome dynamics over genes flanked by their binding sites. Biochemical purification identifies a key histone methyltransferase of H3K36, NSD/dMes-4, as a novel co-factor of IBPs involved in chromatin accessibility, which specifically co-regulates hundreds of genes flanked by Beaf32/dCTCF. dMes-4 presets chromatin before the recruitment of transcriptional activators including DREF that triggers Set2/Hypb-mediated H3K36me3, RNA splicing and nucleosome positioning. Our results unveil a model for how IBPs regulate gene expression and nucleosome dynamics through NSD/dMes-4, which may contribute to regulate H3K27me3 spreading. Together, our data suggest a division of labor for how IBPs may dynamically regulate chromatin organization depending on distinct co-factors. Overall design: mRNA profiles of Beaf32-depleted or Wild-Type control Drosophila S2 cells by RNASeq (Illumina)
Insulators recruit histone methyltransferase dMes4 to regulate chromatin of flanking genes.
Cell line, Subject
View SamplesStudy on selective vulnerability of certain brain regions to oxidative stress. Here we selected 4 brain regions (hippocampal CA1 and CA3, cerebral cortex, and cerebellar granular layer) to study this phenomenon.
Genomic and biochemical approaches in the discovery of mechanisms for selective neuronal vulnerability to oxidative stress.
Specimen part
View SamplesAn important but largely unmet challenge in understanding the mechanisms that govern formation of specific organs is to decipher the complex and dynamic genetic programs exhibited by the diversity of cell types within the tissue of interest. Here, we use an integrated genetic, genomic and computational strategy to comprehensively determine the molecular identities of distinct myoblast subpopulations within the Drosophila embryonic mesoderm at the time that cell fates are initially specified. A compendium of gene expression profiles was generated for primary mesodermal cells purified by flow cytometry from appropriately staged wild-type embryos and from twelve genotypes in which myogenesis was selectively and predictably perturbed. A statistical meta-analysis of these pooled datasetsbased on expected trends in gene expression and on the relative contribution of each genotype to the detection of known muscle genesprovisionally assigned hundreds of differentially expressed genes to particular myoblast subtypes. Whole embryo in situ hybridizations were then used to validate the majority of these predictions, thereby enabling true positive detection rates to be estimated for the microarray data. This combined analysis reveals that myoblasts exhibit much greater gene expression heterogeneity and overall complexity than was previously appreciated. Moreover, it implicates the involvement of large numbers of uncharacterized, differentially expressed genes in myogenic specification and subsequent morphogenesis. These findings also underscore a requirement for considerable regulatory specificity for generating diverse myoblast identities. Finally, to illustrate how the developmental functions of newly identified myoblast genes can be efficiently surveyed, a rapid RNA interference assay that can be scored in living embryos was developed and applied to selected genes. This integrated strategy for examining embryonic gene expression and function provides a substantially expanded framework for further studies of this model developmental system.
An integrated strategy for analyzing the unique developmental programs of different myoblast subtypes.
No sample metadata fields
View SamplesAlthough an important association between lymph node metastasis and poor prognosis in breast cancer was observed decades ago, an active role for the lymphatic system in metastatic dissemination has only recently been examined. We demonstrate that the Six1 homeoprotein promotes peri- and intra-tumoral lymphangiogenesis, lymphatic invasion, and distant metastasis of breast cancer cells. We identify the pro-lymphangiogenic factor, VEGF-C, as required for this process, and demonstrate transcriptional induction as the mechanism of regulation of VEGF-C expression by Six1. Using a different, but complementary animal model, we show that while required, VEGF-C is not sufficient for the pro-metastatic effects of Six1. Verifying the clinical significance of this pro-metastatic Six1-VEGF-C axis, we demonstrate co-expression of Six1 and VEGF-C in human breast cancer.
SIX1 induces lymphangiogenesis and metastasis via upregulation of VEGF-C in mouse models of breast cancer.
Specimen part, Cell line
View SamplesBACKGROUND: miRNA have been shown to play an important role during immune-mediated diseases such as inflammatory bowel disease. The aim of this study was to assess differential expression of miRNA between uninfected and infected mice with Clostridium difficile strain VPI 10463 RESULTS: MicroRNA (miRNA)-sequencing analysis indicated that miR-146b, miR-1940, and miR-1298 were significantly overexpressed in colons of C. difficile-infected mice Overall design: Colon of uninfected and C.difficile-infected C57BL6/J WT mice were sampled at day 4 post-infection with Clostridium difficile VPI 10463. The infection dose was 107 cfu/mouse.
Modeling the role of peroxisome proliferator-activated receptor γ and microRNA-146 in mucosal immune responses to Clostridium difficile.
Specimen part, Cell line, Subject
View SamplesWe recently described TRIM8, a nuclear E3 ubiquitin ligase, whose expression inversely correlates with glioma grade. TRIM8 restoration suppresses cell growth and induces a significant reduction of clonogenic potential in both U87MG glioblastoma and patients' primary glioma cell lines. Since E3 ubiquitin ligase proteins regulate carcinogenesis through the timely control of many cellular processes such as DNA damage response, metabolism, transcription, and apoptosis, we reasoned that TRIM8 activity might impact on cell transcriptome patterns, thereby promoting cancer development and progression. Therefore, we profiled the whole transcriptome of normal embryonic neural stem cells (eNSC) infected with a retrovirus expressing FLAG-Trim8 by using RNA-Seq. RNA-Seq revealed 1365 differentially expressed transcripts of 912 genes. 723 of them (corresponding to 648 RefSeq genes) differed significantly of at least 1.5 folds (192 upregulated transcripts of 178 genes and 531 downregulated transcripts of 470 genes). 80 genes, among all differentially expressed genes, resulted to significantly enrich 18 pathways by IPA analysis. 53% of these genes (43 out of 80 genes) are related to cell-morphology, cell death and survival, with a preponderantly representation of signaling pathways related to neurotransmission and to CNS, including axonal guidance, GABA Receptor, ephrin B, synaptic long-term potentiation/depression, and glutamate receptor. Specifically, our results substantiate the role of TRIM8 in the brain functions through the dysregulation of genes involved in different pathways, including JAK-STAT. Finally, we provided additional evidence about the existence of a functional interactive crosstalk between TRIM8 and STAT3 with possible implications in the development and progression of glioma. Overall design: Profiling the transcriptome of TRIM8-expressing primary mouse embryonal neural stem cells using RNA-Seq
TRIM8-driven transcriptomic profile of neural stem cells identified glioma-related nodal genes and pathways.
Specimen part, Subject
View SamplesDevelopment, growth and adult survival are coordinated with available metabolic resources. The insulin/IGF and TOR signaling pathways relay nutritional status, thereby ascertaining that the organism responds appropriately to environmental conditions. MicroRNAs are short (21-23 nt) regulatory RNAs that confer specificity on the RNA-induced silencing complex (RISC) to inhibit a given set of mRNA targets. We profiled changes in miRNA expression during adult life in Drosophila melanogaster and determined that miR-277 is down-regulated with age. This miRNA controls branched-chain amino acid (BCAA) catabolism and the activity of the TOR kinase, a central growth regulator. Metabolite analysis suggests that the mechanistic basis may be an accumulation of BCKAs, rather than BCAAs, thus avoiding potentially detrimental consequences of increased branched chain amino acid levels on e.g. translational fidelity. Constitutive miR-277 expression as well as transgenic inhibition with a miRNA sponge construct shortens lifespan. Furthermore, constitutive miR-277 expression is synthetically lethal with reduced insulin signaling. Thus, optimal metabolic adaptation requires tuning of cellular BCAA catabolism by miR-277 to be concordant with systemic growth signaling. Overall design: Transgenic Drosophila melanogaster fruitflies carrying strong, ubiquitously expressed pre-miR277 hairpins (wt and two mutant versions) were dissected, total RNA was extracted from the abdomen and gel-purified for size selection (~18-30 nt). Digested plasmid samples were compared to those of circular plasmids and a nontransfected control. The purpose of this experiment was to demonstrate the extent of expression from mutant pre-miR277 hairpins, mut1 should abolish Drosha-processing while mut2 is conservative.
Drosophila miR-277 controls branched-chain amino acid catabolism and affects lifespan.
Specimen part, Subject
View Samples