Corticospinal motor neurons (CSMN) are one specialized class of cortical excitatory neurons, which connect layer Vb of the cortex to the spinal cord. a master transcription factor Forebrain expressed zinc finger 2 (Fezf2) has been identified that is necessary for the fate specification of CSMN. Fezf2 alone can cell-autonomously instruct the acquisition of CSMN-specific features when expressed in diverse, permissive cellular contexts, in vivo.
Gene co-regulation by Fezf2 selects neurotransmitter identity and connectivity of corticospinal neurons.
No sample metadata fields
View SamplesThe purpose of this study was to characterize the gene expression profile of MDA-MB-231 breast cancer cells treated with various SCFA-hexosamine analogs to better understand the role of various modifications to this scaffold.
Hexosamine template. A platform for modulating gene expression and for sugar-based drug discovery.
No sample metadata fields
View SamplesIn this study, we have explored microarray-based differential gene expression profile in mouse lung tissue 8 h after inducing polymicrobial sepsis and the effect of preprotachykinin-A (PPTA) gene deletion. A range of genes differentially expressed (> 2-fold) in microarray analysis was assessed, PPTA-knockout septic mice with their respective sham controls.
Substance P in polymicrobial sepsis: molecular fingerprint of lung injury in preprotachykinin-A-/- mice.
Specimen part, Treatment
View SamplesInhibition of proteasome degradation pathway has been implicated in neuronal cell death leading to neurodegenerative diseases such as Parkinsons disease and Alzheimers disease. Pharmacological proteasomal inhibitors such as lactacystin can induce apoptosis in cultured mouse cortical neurons through the activation of caspase-3. Furthermore, proteasomal inhibitors are also reported to mediate deleterious alterations in cell cycle regulation, inflammatory processes and protein aggregation and trigger the cell death pathway.
Up-regulation of endoplasmic reticulum stress-related genes during the early phase of treatment of cultured cortical neurons by the proteasomal inhibitor lactacystin.
Specimen part, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A global transcriptomic view of the multifaceted role of glutathione peroxidase-1 in cerebral ischemic-reperfusion injury.
Treatment
View SamplesIschemic stroke triggers severe focal hypoperfusion accompanied with deprivation of oxygen and glucose to the cerebral tissue, together with loss of ATP, depolorization of neurons, elevated extracellular potassium concentration, and subsequently leads to excitotoxicity as well as increased oxidative stress promoting microvascular injury, blood-brain-barrier deregulation, post-ischemic inflammation and eventually the consequential neurological deficit. Although reperfusion of ischemic brain tissue is critical for restoring normal function, it can paradoxically result in secondary damage, called ischemia/reperfusion (I/R) injury.
A global transcriptomic view of the multifaceted role of glutathione peroxidase-1 in cerebral ischemic-reperfusion injury.
Treatment
View SamplesTo investigate the molecular bases of diet induced differences in milk composition, we collected milk from mid lactation dairy ewes and after 3 weeks of diet supplementation with extruded linseed. RNAs were isolated from milk somatic cells isolated from milk of 3 sheep and Illumina RNA sequencing was performed to analyze RNA synthesis in these cells. Overall design: Transcriptional profiling of milk somatic cells of sheep fed with normal diet and with a supplementation with extruded linseed. Sequence data were generated by deep sequencing, on three replicates, using Illumina HiSeq2000.
Transcript profiling in the milk of dairy ewes fed extruded linseed.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome-wide methylation analysis in vestibular schwannomas shows putative mechanisms of gene expression modulation and global hypomethylation at the HOX gene cluster.
Specimen part
View SamplesBackground: Schwannomas and grade I meningiomas are non-metastatic neoplasms that shares the common mutation of gene NF2. They usually appear in Neurofibromatosis type 2 patients. Currently, there is no drug treatment available for both tumors, so the use of wide expression technologies is crucial to find those therapeutic targets.
Global expression profile in low grade meningiomas and schwannomas shows upregulation of PDGFD, CDH1 and SLIT2 compared to their healthy tissue.
Specimen part
View SamplesVestibular schwannomas are intracranial tumors that affects unilateral and sporadically or bilateral when is associated to Neurofibromatosis type 2 syndrome. The hallmark of the disease is the biallelic inactivation by NF2 gene mutation or LOH of chromosome 22q, where this gene harbors. In this work, we used Infinium HumanMethylation 450K BeadChip microarrays in a series of 36 vestibular schwannomas, 4 non-vestibular schwannomas and 5 healthy nerves. Our results shows a trend to hypomethylation in schwannomas. Furthermore, HOX genes, located at 4 clusters in the genome, displayed hypomethylation in numerous CpG sites in vestibular but not in non-vestibular schwannomas. Additionally, several microRNA and protein-coding genes were found hypomethylated at promoter regions and confirmed by expression analysis; including miRNA-199a1, miRNA-21, MET and PMEPA1. We also detected methylation patterns that might be involved in alternative transcripts of several genes such as NRXN1 or MBP; that would increase the complexity of methylation-expression. Overall, our results shows specific epigenetic signatures in several coding genes and microRNA that could be used in the finding of potential therapeutic targets.
Genome-wide methylation analysis in vestibular schwannomas shows putative mechanisms of gene expression modulation and global hypomethylation at the HOX gene cluster.
Specimen part
View Samples