The cell surface mucin MUC1 is an important host factor limiting Helicobacter pylori (H. pylori) pathogenesis in both humans and mice by providing a protective barrier and modulating mucosal epithelial and leukocyte responses.
Influence of the MUC1 Cell Surface Mucin on Gastric Mucosal Gene Expression Profiles in Response to <i>Helicobacter pylori</i> Infection in Mice.
Time
View SamplesBackground
Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis.
Sex, Age, Specimen part
View SamplesSbrI and SbrR are an extracytoplasmic function sigma factor and its cognate anti-sigma factor, respectively. To identify the SbrIR regulon, we measured gene expression in wild type PAO1 , PAO1 sbrR, and PAO1 sbrIR mutants using microarrays.
σ Factor and Anti-σ Factor That Control Swarming Motility and Biofilm Formation in Pseudomonas aeruginosa.
No sample metadata fields
View SamplesExpression from CD133+ cells isolated from adult human exocrine tissue was compared to a CD133-depleted cell population Overall design: Islet-depleted exocrine tissue from three independent adult human cadaveric pancreata were cultured for four days in Miami media 1A. Following trypsinization, cells were isolated using anti-CD133 immunomagnetic beads to >95% CD133+. CD133-negative cells were further depleted of CD133+ cells to <1% CD133+.
Neurogenin 3 is regulated by neurotrophic tyrosine kinase receptor type 2 (TRKB) signaling in the adult human exocrine pancreas.
No sample metadata fields
View SamplesAirway epithelium is the initial point of host-pathogen interaction in Pseudomonas aeruginosa infection, an important pathogen in cystic fibrosis and nosocomial pneumonia. We used global gene expression analysis to determine airway epithelial transcriptional responses dependent on matrilysin (MMP-7) and stromelysin-2 (MMP-10), two matrix metalloproteinases induced by acute P. aeruginosa pulmonary infection. Extraction of Differential Gene Expression (EDGE) analysis of gene expression changes in P. aeruginosa infected organotypic tracheal epithelial cell cultures from wildtype, Mmp7-/-, and Mmp10-/- mice identified 2,089 matrilysin-dependent and 1,628 stromelysin-2-dependent genes that were differentially expressed. Key node network analysis showed that these MMPs controlled distinct gene expression programs involved in proliferation, cell death, immune responses, and signal transduction, among other host defense processes. Our results demonstrate discrete roles for these MMPs in regulating epithelial responses to pseudomonas infection and show that a global genomics strategy can be used to assess MMP function.
Individual matrix metalloproteinases control distinct transcriptional responses in airway epithelial cells infected with Pseudomonas aeruginosa.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
PGC-1α Promotes Breast Cancer Metastasis and Confers Bioenergetic Flexibility against Metabolic Drugs.
Specimen part, Cell line
View SamplesThe role of PGC1alpha in breast cancer lung metastasis is largely unknown. We used expression data from lung metastasis of mice injected with PGC1alpha overexpression or control cells to understand global changes that occur upon overexpression of PGC1alpha that lead to lung metastasis.
PGC-1α Promotes Breast Cancer Metastasis and Confers Bioenergetic Flexibility against Metabolic Drugs.
Specimen part, Cell line
View SamplesThe role of PGC1alpha in breast cancer lung metastasis is largely unknown. We used expression data from lung metastatic explants overexpressing PGC1alpha or control, treated with phenformin to understand global gene expression changes which occur in a PGC1alpha context and under phenformin treatment.
PGC-1α Promotes Breast Cancer Metastasis and Confers Bioenergetic Flexibility against Metabolic Drugs.
Specimen part, Cell line
View SamplesTo understand global expression changes in a knockdown of PGC1alpha (siPGC1alpha) vs control (siControl) in a lung metastatic cell line (4175)
PGC-1α Promotes Breast Cancer Metastasis and Confers Bioenergetic Flexibility against Metabolic Drugs.
Cell line
View SamplesTranslational profiling methodologies enable the systematic characterization of cell types in complex tissues such as the mammalian brain, where neuronal isolation is exceptionally difficult. Here, we report a versatile strategy to profile CNS cell types in a spatiotemporally-restricted fashion by engineering a Cre-dependent adeno-associated virus expressing an EGFP-tagged ribosomal protein (AAV-FLEX-EGFPL10a) to access translating mRNAs by TRAP. We demonstrate the utility of this AAV to target a variety of genetically and anatomically defined neural populations expressing Cre recombinase and illustrate the ability of this viral TRAP (vTRAP) approach to recapitulate the molecular profiles obtained by bacTRAP in corticothalamic neurons across multiple serotypes. Furthermore, spatially restricting AAV injections enabled the elucidation of regional differences in gene expression within this cell type. Taken together, these results establish the broad applicability of the vTRAP strategy for the molecular dissection of any CNS or peripheral cell type that can be engineered to express Cre. Overall design: Polysome-bound mRNAs from TRAP IPs were compared to whole tissue mRNAs. Data was collected from MCH neurons in hypothalamus using vTRAP, cortical layer 6 Ntsr1 neurons using vTRAP, and cortical layer 6 Ntsr1 neurons using bacTRAP. We include vTRAP data from three AAV serotypes for the cortical Ntsr1 cells. We collected three replicates for IP and inputs for vTRAP experiments, while bacTRAP data was collected in duplicate.
Rapid Molecular Profiling of Defined Cell Types Using Viral TRAP.
Specimen part, Subject
View Samples