Purpose:Next-generation sequencing has revolutionized sytems-level celluar pathway analysis. The goals of this study are to compare the U87 cell xenograft GBM mice (U87 cell line) to TWIST1 knock out U87 cell xenograft GBM mice (TWIST1 knock out U87 cell line) using their transcriptomes Overall design: Methods: Investigation of TWIST1 expression on glioblastoma malignancy in vitro and in vivo.
Targeting TWIST1 through loss of function inhibits tumorigenicity of human glioblastoma.
Specimen part, Subject
View SamplesHere we describe sci-CAR, a combinatorial indexing strategy to jointly profile chromatin accessibility and mRNA in each of thousands of single cells. As a proof-of-concept, we apply sci-CAR to 4,825 cells comprising a time-series of dexamethasone treatment, as well as to 11,233 cells from the mouse kidney. Overall design: single cell RNA-seq and ATAC-seq co-profiling for HEK293T cells, NIH/3T3 cells, A549 cells across three treatment conditions (DEX 0 hour, 1 hour and 3 hour treatment), and wild type mouse kidney.
Joint profiling of chromatin accessibility and gene expression in thousands of single cells.
No sample metadata fields
View SamplesBACKGROUND:
Milk yield responses to changes in milking frequency during early lactation are associated with coordinated and persistent changes in mammary gene expression.
Specimen part, Time
View SamplesMilking dairy cows four times daily (4X) instead of twice daily (2X) during early lactation stimulates an increase in milk yield that partly persists through late lactation; however, the mechanisms behind this response are unknown. We hypothesized that the acute mammary response to regular milkings would be transient and would involve different genes from those that may be specifically regulated in response to 4X. Nine multiparous cows were assigned at parturition to unilateral frequent milking (UFM; 2X of the left udder half, 4X of the right udder half). Mammary biopsies were obtained from both rear quarters at 5 days in milk (DIM), immediately after 4X glands had been milked (Experiment 1; n = 4 cows), or 2.5 h after both udder halves had last been milked (Experiment 2; n = 5 cows). Affymetrix GeneChip Bovine Genome Arrays were used to measure gene expression. Eight hundred and fifty five genes were differentially expressed in mammary tissue between 2X vs. 4X glands of cows in experiment 1 (FDR 0.05), whereas none were differentially expressed in experiment 2 using the same criterion. We conclude that there is an acute transcriptional response to milk removal, but 4X milking did not elicit differential expression of unique genes. Therefore, there does not appear to be a sustained transcriptional response to 4X milking on day 5 of lactation. Using a differential expression plot of data from both experiments, as well as qRT-PCR, we identified at least two genes that may be responsive to both milk removal and to 4X milking. Therefore, the milk yield response to 4X milking may be mediated by genes that are acutely regulated by removal of milk from the mammary gland.
Acute milk yield response to frequent milking during early lactation is mediated by genes transiently regulated by milk removal.
Specimen part, Treatment
View SamplesCows exposed to short day photoperiod (SD, 8L:16D) during the 60-day non-lactating period prior to parturition produce more milk in their subsequent lactation compared to cows exposed to long day photoperiod (LD,16L:8D). Although this response is well-established in dairy cows, the underlying mechanisms are not understood. We hypothesized that differential gene expression in cows exposed to SD or LD photoperiods during the dry period could be used to identify the functional basis for the subsequent increase in milk production during lactation. Pregnant, multiparous cows were maintained on a SD or LD photoperiod for 60-days prior to parturition. Mammary biopsies were obtained on days -24 and -9 relative to parturition and Affymetrix GeneChip Bovine Genome Arrays were used to quantify gene expression. Sixty-four genes were differentially expressed (p 0.05 and fold-change |1.5|) between SD and LD treatments. Many of these genes were associated with cell growth and proliferation, or immune function. Ingenuity Pathway Analysis predicted upstream regulators to include TNF, TGF1, interferon and several interleukins. In addition, expression of 125 genes was significantly different between day -24 and day -9; those genes were associated with milk component metabolism and immune function. The interaction of photoperiod and time affected 32 genes associated with insulin-like growth factor (IGF-I) signaling. Genes differentially expressed in response to photoperiod were associated with mammary development and immune function consistent with the enhancement of milk yield in the ensuing lactation. Our results provide insight into the mechanisms by which photoperiod affects the mammary gland and subsequently lactation.
Responses of the mammary transcriptome of dairy cows to altered photoperiod during late gestation.
Specimen part
View SamplesKeloids are scars that extend beyond original wounds and are resistant to treatment. In order to improve understanding of the molecular basis of keloid scarring, we have assessed the genomic profiles of keloid fibroblasts and keratinocytes.
Keloid-derived keratinocytes exhibit an abnormal gene expression profile consistent with a distinct causal role in keloid pathology.
Sex, Age, Specimen part, Race
View SamplesUsing EWS-FLI and its parental transcription factor, FLI1, we created a unique experimental system to address questions regarding the genomic mechanisms by which chimeric transcription factors cause cancer. We found that in tumor cells, EWS-FLI targets regions of the genome distinct from FLI1, despite identical DNA-binding domains. In primary endothelial cells, however, EWS-FLI and FLI1 demonstrate similar targeting. To understand this mistargeting, we examined chromatin organization. Regions targeted by EWS-FLI are normally repressed and nucleosomal in primary endothelial cells. In tumor cells, however, bound regions are nucleosome-depleted and harbor the chromatin signature of enhancers. We next demonstrated that through chimerism, EWS-FLI acquired the ability to alter chromatin. Expression of EWS-FLI results in nucleosome depletion at targeted sites, whereas silencing of EWS-FLI in tumor cells restored nucleosome occupancy. Thus, the EWS-FLI chimera acquired chromatin-altering activity, leading to mistargeting, chromatin disruption, and ultimately transcriptional dysregulation.
Tumor-specific retargeting of an oncogenic transcription factor chimera results in dysregulation of chromatin and transcription.
Cell line
View SamplesThe goal of the experiment: To characterize the dynamic gene expression profile of engineered human skin in vitro and after grafting, and compare with expression profile of uninjured human skin.
Engineered human skin substitutes undergo large-scale genomic reprogramming and normal skin-like maturation after transplantation to athymic mice.
Specimen part
View SamplesIn two disparate models, we show that rapid revaccination following sublethal gamma radiation exposure rescues memory CD8+ T cell Responses.
Rescue of CD8+ T cell vaccine memory following sublethal γ irradiation.
No sample metadata fields
View SamplesTargeted disruption of NRAS was performed in a stable 381T ERMS cell line harboring tamoxifen inducible CRISPR/Cas9 gRNA against NRAS Overall design: RNA sequencing was performed using RNA extracted from uninduced control 381T ERMS cells as well as tamoxifen (TAM)-induced ERMS cells with NRAS CRISPR/Cas9-mediated knockout. Each in 3 biological replicates.
Oncolytic Virus-Mediated RAS Targeting in Rhabdomyosarcoma.
Subject
View Samples