Although the specific functions of sleep have not been completely elucidated, the literature has suggested that sleep is essential for proper homeostasis. Sleep loss is associated with changes in behavioral, neurochemical, cellular, and metabolic function as well as impaired immune response. We evaluated the gene expression profiles of healthy male volunteers who underwent 60 hours of prolonged wakefulness (PW) followed by 12 hours of sleep recovery (SR) using high-resolution microarrays. Peripheral whole blood was collected at 8 am in the morning before the initiation of PW (baseline), after the second night of PW, and one night after SR. We identified over 500 genes that were differentially expressed. Notably, these genes were related to DNA damage and repair and stress response as well diverse immune system responses such as natural killer pathways including killer cell lectin-like receptors family, as well granzymes and T-cell receptors which play important roles in host defense. These results support the idea that sleep loss can lead to alterations in molecular processes that result in perturbation of cellular immunity, induction of inflammatory responses, and homeostatic imbalance. Moreover, expression of multiple genes was down-regulated following PW and up-regulated after SR compared to PW, suggesting an attempt of the body to re-establish internal homeostasis. In silico validation of alterations in the expression of CETN3, DNAJC and CEACAM genes, confirmed previous findings related to the molecular effects of sleep deprivation. Thus, the present findings confirm that the effects of sleep loss are not restricted to the brain and can occur intensely in peripheral tissues.
Whole blood genome-wide gene expression profile in males after prolonged wakefulness and sleep recovery.
Specimen part
View SamplesA growing body of evidence points to the essential role of bone marrow (BM) tumor microenvironment in Multiple Myeloma (MM) maintenance and progression. Mesenchymal stem cells (MSC) are one of the most important players in this scenario. Through direct and indirect interactions, these cells support MM cells by promoting increase of proliferation, migration, survival, and drug resistance. Additionally, an increasing number of evidence has been demonstrating that MSC from MM patients (MM-MSC) have several abnormalities when compared with their normal counterpart from normal donors (ND-MSC). Therefore, the aimed of our study was to explore the differences between MM-MSC and ND-MSC through gene expression analysis.
Transcriptome Analysis of Mesenchymal Stem Cells from Multiple Myeloma Patients Reveals Downregulation of Genes Involved in Cell Cycle Progression, Immune Response, and Bone Metabolism.
Sex, Age, Specimen part, Disease stage, Subject
View SamplesIn an attempt to elucidate the molecular mechanisms underlying the multiple roles of L1 in endothelium, we checked whether manipulating its expression affected the transcriptome of lECs. To this purpose, we compared the gene expression profiles of L1-overexpressing and control lECs by Affymetrix, which revealed a remarkable effect of L1 overexpression on lECs transcriptome.
Endothelial deficiency of L1 reduces tumor angiogenesis and promotes vessel normalization.
Specimen part
View SamplesThe aim of this study is to profile gene expression dynamics during the in vitro differentiation of embryonic stem cells into ventral motor neurons. Expression levels were profiled using Affymetrix microarrays at six timepoints during in vitro differentiation: ES cells (Day 0), embryoid bodies (Day 2), retinoid induction of neurogenesis (Day 2 +8hours of exposure to retinoic acid), neural precursors (Day 3), progenitor motor neurons (Day 4), postmitotic motor neurons (Day 7).
Ligand-dependent dynamics of retinoic acid receptor binding during early neurogenesis.
Cell line
View SamplesIn this experiment, we sought to analyze how the transcriptome of WT, ?5|6, and ?5|6:7|9 cells vary during differentiation of ESCs into cervical motor neurons Overall design: 3 lines (WT, ?5|6, ?5|6:7|9)
CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation.
No sample metadata fields
View SamplesPurpose: We purified whole brain microglia of MFP2 knockout mice and control mice utilizing percoll gradient and FACS sorting, followed by microarray analysis to define the molecular changes in MFP2 knockout mice at the endstage of the disease. We compared the microglia transcriptome of Mfp2-/- microglia to that of SOD1-G93A microglia isolated from spinal cord to define the microglia signature associated with a non-neurodegenerative environment. Results and conclusions: Mfp2-/- microglia acquire an activation state characterized by activation of mammalian target of rapamycin (mTOR). In addition, activated microglia display reduced expression of genes that are normally highly expressed by surveillant microglia in steady-state conditions. The immunological profile of is heterogeneous and encompasses upregulation of both pro- and anti-inflammatory genes. In contrast to the neurodegeneration-specific microglia profile in SOD1-G93A mice, Mfp2-/- microglia do not induce genes associated with phagocytosis, lysosomal activation and neurotoxicity.
Identification of a chronic non-neurodegenerative microglia activation state in a mouse model of peroxisomal β-oxidation deficiency.
Sex, Age, Specimen part
View SamplesTranscriptional programming of cell identity promises to open up new frontiers in regenerative medicine by enabling the efficient production of clinically relevant cell types. We examine if such cellular programming is accomplished by transcription factors that each have an independent and additive effect on cellular identity, or if programming factors synergize to produce an effect that is not independently obtainable. The combinations of Ngn2-Isl1-Lhx3 and Ngn2-Isl1-Phox2a transcription factors program embryonic stem cells to express a spinal or cranial motor neuron identity respectively. The two alternate expression programs are determined by recruitment of Isl1/Lhx3 and Isl1/Phox2a pairs to distinct genomic locations characterized by two alternative dimeric homeobox motifs. These results suggest that the function of programming modules relies on synergistic interactions among transcription factors and thus cannot be extrapolated from the study of individual transcription factors in a different cellular context.
Synergistic binding of transcription factors to cell-specific enhancers programs motor neuron identity.
Cell line, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Histone Methyltransferase G9a Is Required for Cardiomyocyte Homeostasis and Hypertrophy.
Treatment
View SamplesThe role of the histone mehyltrasferase G9a (also known as Ehmt2) in cardiac hypertrophy has not been studied extensively. To address how G9a promotes cardiac hypertrophy, we assessed the gene expression signature defined by G9a in cardiomyocytes (CM) of mice subject to transverse aortic constriction (TAC) for 1 wk, a surgical procedure that causes cardiac hypertrophy following the induction of pressure overload. To this end, we compared the expression profiles of CMs isolated from mice treated with the G9a inhibitor BIX-01294 and control groups (untreated and DMSO-treated mice at baseline and after TAC). The expression profiles were defined by Illumina arrays .
Histone Methyltransferase G9a Is Required for Cardiomyocyte Homeostasis and Hypertrophy.
No sample metadata fields
View SamplesUnderstanding the trancriptional role of FOXF1 in mesenchymal activation
Loss of FOXF1 expression promotes human lung-resident mesenchymal stromal cell migration via ATX/LPA/LPA1 signaling axis.
No sample metadata fields
View Samples