26972c yeast cells were transformed with either empty vector (pYES3) or pYES3:Gm:bHLHm1. Cells were grown on low ammonium concentrations to observe transcriptional changes in the yeast genome in response to the soybean bHLHm1 transcription factor.
Soybean SAT1 (Symbiotic Ammonium Transporter 1) encodes a bHLH transcription factor involved in nodule growth and NH4+ transport.
No sample metadata fields
View SamplesHCT116 cells were transfected with two different siRNA's targeting either DDX5, an siRNA targeting EBNA1, or no siRNA (mock). The siRNA targeting EBNA1 is used as a negative control since HCT116 cells do not have the EBNA1 gene. RNA was obtained from cultures at 24hrs post-siRNA transfection using the Qiagen RNeasy Minikit (cat. # 74104) with on-column DNase digestion performed as per the manufacturer's protocol. The RNA samples were isolated at 24hrs post-siRNA transfection since this timepoint precedes an impaired G1-to-S phase cell cycle progression phenotype that is evident at 48hrs post-siRNA transfection and so may reveal gene expression changes occuring before this effect on cell cycle. RNA samples were submitted to the Cold Spring Harbor Laboratory Microarray Faciity where cDNA was prepared, labeled, and hybridized to Affymetrix GeneChip Human Gene 1.0 ST microarrays. Data from the arrays were processed using the RMA method with an up-to-data probe set definition (Biostatistics 4:249-264 and Nucleic Acids Research 33(20):e175. Gene set analysis was performed using generally applicable gene set enrichment (BMC Bioinformatics 10:161). The most differentially regulated gene ontology groups were selected with FDR q-value < 0.1.
DDX5 regulates DNA replication and is required for cell proliferation in a subset of breast cancer cells.
Cell line
View SamplesAnalysis of wig-1 pathways via suppression of Wig-1 by antisense oligonucleotides
Genomic analysis of wig-1 pathways.
Specimen part, Treatment
View SamplesRecently a genome of Russian individual (somatic DNA from blood) was sequenced (Skryabin et al. 2009). That study was continued to find a linkage between genetic differences in parental alleles and bias in biallelic expression of genes.
Individual genome sequencing identified a novel enhancer element in exon 7 of the CSFR1 gene by shift of expressed allele ratios.
No sample metadata fields
View SamplesMAPK scaffolds, such as IQGAP1, assemble pathway kinases together to effect signal transmission and disrupting scaffold function therefore offers a potentially orthogonal approach to MAPK cascade inhibition. Consistent with this possibility, we observed an IQGAP1 requirement in Ras-driven tumorigenesis in mouse and human tissue. Delivery of the IQGAP1 WW peptide sequence that mediates Erk1/4 binding, moreover, disrupted IQGAP1-Erk1/2 interactions, abolished Ras/Raf-driven tumorigenesis, bypassed acquired resistance to the B-Raf inhibitor vemurafinib (PLX- 4032), and acts as a systemically deliverable therapeutic to significantly increase lifespan of tumor bearing mice. Scaffold-kinase interaction blockade (SKIB) acts by a mechanism distinct from direct kinase inhibition and represents a strategy to target over-active oncogenic kinase cascades in cancer.
IQGAP1 scaffold-kinase interaction blockade selectively targets RAS-MAP kinase-driven tumors.
Time
View SamplesDBZ (dibenzazepine) treatment in C57BL/6 mice, pancreatic gene expression
Notch signaling is required for exocrine regeneration after acute pancreatitis.
Sex, Age, Specimen part, Disease, Compound, Time
View SamplesAbstract: Transcriptome analysis was applied to characterize the physiological activities of Pseudomonas aeruginosa grown for three days in drip-flow biofilm reactors. Conventional applications of transcriptional profiling often compare two paired data sets that differ in a single experimentally controlled variable. In contrast this study obtained the transcriptome of a single biofilm state, ranked transcript signals to make the priorities of the population manifest, and compared rankings for a priori identified physiological marker genes between the biofilm and published data sets.
Physiology of Pseudomonas aeruginosa in biofilms as revealed by transcriptome analysis.
Treatment
View SamplesPTK7 was identified from a meta-analysis of 1905 non-small-cell lung cancer (NSCLC) samples across 12 datasets to be one of seven genes commonly up-regulated in lung adenocarcinoma (ADC). Using ADC cell lines NCI-H1299 and NCI-H2009, disruption of PTK7 resulted in decreased cell viability and induction of apoptosis. A xenotransplantation model of the cell lines with PTK7 knock-down also resulted in decreased tumor burden. We assayed gene expression in these cell lines after PTK7 knock-down by shRNA to uncover deregulated pathways and genes.
A meta-analysis of lung cancer gene expression identifies PTK7 as a survival gene in lung adenocarcinoma.
Specimen part, Cell line
View SamplesHematopoietic stem cells (HSCs), which reside in bone marrow niches, are exposed to low levels of oxygen and follow an oxygen gradient throughout their differentiation. Hypoxia-inducible factors (HIFs) are the main factors regulating the cell response to oxygen variation. Recent studies using conditional knockout mouse models have unveiled a major role of HIF-1a in the maintenance of murine HSCs, however the role of HIF-2a is still unclear. Here, we show that knockdown of HIF-2a and to a much lower extent, HIF-1a impedes the long-term repopulating ability of human CD34+ umbilical cord blood derived cells. The defects observed in hematopoietic stem and progenitor cell (HSPC) function after HIF-2a knockdown was due to an increase in the production of reactive oxygen species (ROS), which increases the endoplasmic reticulum (ER) stress in HSPCs and triggers apoptosis by the activation of the unfolded-protein-response (UPR) pathway. Importantly, HIF-2a deregulation also resulted in a significant decrease of engraftment of human acute myeloid leukemia (AML) cells. Overall, our data demonstrates a key role of HIF-2a in the maintenance of human HSPCs and in the survival of primary AML cells.
HIF-2α protects human hematopoietic stem/progenitors and acute myeloid leukemic cells from apoptosis induced by endoplasmic reticulum stress.
Specimen part
View SamplesPurpose: The intergration of genetic and chemical screens identified SETD8 as a new druggable target in neuroblastoma tumor. The goal of this study is to evaluate the transcriptome profiling (RNA-seq) of Neuroblastoma cell lines after genetic and pharmacological inhibition of SETD8. Methods: mRNA profiles of NB cells after genetic and pharmacological inhibition of SETD8 were generated by deep sequencing in duplicate with Ilumina HiSeq2500 using Illumina TruSeq V4. The sequence reads were analyzed with software Trimmomatic, STAR and edgeR to determine the differetially expressed genes. qRT–PCR validation was performed using SYBR Green assays. Results: About 60 million sequence reads per sample were mapped to the human genome (hg19). Approximately 10% of the transcripts showed differential expression between the control and the treated samples, with a fold change =1.5 and p value <0.05. Altered expression of 12 genes was confirmed with qRT–PCR, demonstrating the high degree of sensitivity of the RNA-seq method. Hierarchical clustering of differentially expressed genes uncovered several as yet uncharacterized genes that may contribute to SETD8 function. Conclusions: Our study identifies SETD8 as a new therapeutic target in Neuroblastoma tumor. RNA-seq transcriptome analyses and functional studies revealed that SETD8 ablation rescued the proapoptotic and cell-cycle arrest functions of p53 through reactivation of the p53 canonical pathway by decreasing p53k382me1. Overall design: mRNA profiles of Neuroblastoma cells after genetic and pharmacological inhibition of SETD8 were generated by deep sequencing in duplicate with Ilumina HiSeq2500 using Illumina TruSeq V4.
Epigenetic siRNA and Chemical Screens Identify SETD8 Inhibition as a Therapeutic Strategy for p53 Activation in High-Risk Neuroblastoma.
Specimen part, Subject
View Samples