There is some emerging evidence that members of the Schlafen (SLFN) family of proteins mediate antineoplastic responses, but the mechanisms accounting for these effects are not known. We provide evidence that human SLFN5, an interferon (IFN)- inducible member of the family, exhibits key roles in controlling motility and invasiveness of renal cell carcinoma (RCC) cells. Our studies define the mechanism by which this occurs, demonstrating that SLFN5 negatively controls expression of matrix metalloproteinases (MMP)-1 and -13 and several other genes involved in the control of malignant cell motility. Importantly, our data establish that SLFN5 expression correlates with a better overall survival in a large cohort of patients with RCC. The inverse relationship between SLFN5 expression and RCC aggressiveness raises the possibility of developing unique therapeutic approaches in the treatment of RCC, by modulating SLFN5 expression. Overall design: Examination of 2 SLFN5 knockdown cells and 2 controls, in triplicate.
Human Schlafen 5 (SLFN5) Is a Regulator of Motility and Invasiveness of Renal Cell Carcinoma Cells.
No sample metadata fields
View SamplesIn this dataset we include the data obtained from 3 hour stimulation with Neisseria gonorrhoeae (GC) of bone marrow macrophages(BMDM) from wild type (C57BL/6) and Nod2 knock out mice (in C57BL/6 background).
Activation of NOD receptors by Neisseria gonorrhoeae modulates the innate immune response.
Specimen part
View SamplesAssessment of the putative differential gene expression profiles in high osmolality-treated bovine nucleus pulposus intervertebral disc cells for a short (5 h) and a long (24 h) time period. Identification of novel genes up- or down-regulated as an early or a late response to hyperosmotic stress.
Deficiency in the α1 subunit of Na+/K+-ATPase enhances the anti-proliferative effect of high osmolality in nucleus pulposus intervertebral disc cells.
Specimen part
View SamplesThe Ets2 transcription factor is essential for the development of the mouse placenta and for generating signals for embryonic mesoderm and axis formation. Using a conditional targeted Ets2 allele, we show that Ets2 is essential for trophoblast stem (TS) cells self renewal. Inactivation of Ets2 results in slower growth, increased expression of a subset of differentiation associated genes and decreased expression of several genes implicated in TS self renewal. Among the direct TS targets of Ets2 is Cdx2, a key master regulator of TS cell state. In addition other Ets2 responsive genes include Pace4, Errb, Socs2 and Bmp4. Thus Ets2 contributes to the regulation of multiple genes important for maintaining the undifferentiated state of TS cells and as candidate signals for embryonic development.
Ets2 is required for trophoblast stem cell self-renewal.
No sample metadata fields
View SamplesDuring the invasive phase of implantation, trophoblasts and maternal decidual stromal cells secrete products that regulate trophoblast differentiation and migration into the maternal endometrium. Paracrine interactions between the extravillous trophoblast and the maternal decidua are important for successful embryonic implantation, including establishing the placental vasculature, anchoring the placenta to the uterine wall, and promoting immuno-acceptance of the fetal allograph. Global cross-talk between the trophoblast and the decidua has not been elucidated to date, and the current study used a functional genomics approach to investigate these paracrine interactions.
Decidual stromal cell response to paracrine signals from the trophoblast: amplification of immune and angiogenic modulators.
No sample metadata fields
View SamplesThis experiment aimed to investigate whether cells that express the L-Lysine-producing enzyme lyr exhibit any mRNA changes when grown on precursor D-Lysine relative to L-Lysine.
Cell-selective labeling using amino acid precursors for proteomic studies of multicellular environments.
Cell line
View SamplesThis experiment aimed to investigate whether cells that express the L-Lysine-producing enzyme DDC exhibit any mRNA changes when grown on precursor DAP relative to L-Lysine.
Cell-selective labeling using amino acid precursors for proteomic studies of multicellular environments.
Cell line
View SamplesNOD mice were injected once a week with LTBR-Ig to block the LTBR-pathway, or with control monoclonal antibody MOPC from age 8 to 16 weeks old. Extraorbital lacrimal glands or submaxillary glands were dissected and total mRNA prepared. Each sample was either the combined lacrimals (2) from each mouse or individual salivary glands. There were 4 mice in each treatment group. Total mRNA was isolated and the quality was assessed using the Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA). Reverse transcription to prepare cDNA was performed using Invitrogen M-MLV system. The purpose was to determine changes in gene expression in glands due to blockade of the LTBR-pathway.
Lymphotoxin-beta receptor blockade reduces CXCL13 in lacrimal glands and improves corneal integrity in the NOD model of Sjögren's syndrome.
Specimen part, Treatment, Time
View SamplesMicroRNAs (miRNAs) have emerged as novel cancer genes. In particular, the 17~92 cluster of miRNAs is highly expressed in haematopoietic cancers and promotes lymphomagenesis in vivo1,2. Clinical use of these findings hinges on isolating the oncogenic activity within the 17~92 cluster and defining its relevant target genes. Here we show that miR-19 is sufficient to promote leukaemogenesis in Notch1 induced T-cell lymphoblastic leukaemia (T-ALL) in vivo. Consistent with the pathogenic importance of this interaction, we report a novel translocation targeting the 17~92 miRNA cluster coinciding with a second rearrangement that activates Notch1 in T-ALL. To identify the miR-19 targets responsible for its oncogenic action, we conducted a large-scale short-hairpin RNA (shRNA) screen for genes whose knockdown could phenocopy miR-19. Strikingly, the results of this screen were enriched for miR-19 target genes, and included Bim (Bcl2L11)1,3, AMP-activated kinase (Prkaa1), and the tumour suppressor phosphatases Pten and PP2A (Ppp2r5e). Hence, an unbiased, functional genomics approach reveals a coordinate clamp down on several regulators of PI3K-related survival signals by the leukaemogenic miR-19.
Genome-wide RNA-mediated interference screen identifies miR-19 targets in Notch-induced T-cell acute lymphoblastic leukaemia.
Cell line
View SamplesPurpose: The purpose of this study is to identify functionally inter-connected group of miRNAs whose reduced expression promotes leukemia development in vivo. We searched for relevant target genes of these miRNAs that are upregulated in T-ALL relative to controls. Methods: In order to examine the global gene expression, we generated 9 T-ALL patients and 4 normal controls by deep sequencing using Illumina Hi-Seq sequencer. The sequence reads that passed quality filters were analyzed using Spliced Transcripts Alignment to a Reference aligner (STAR) followed by differential gene expression analysis using DESeq. Results: Using an optimized data analysis workflow, we mapped reads per sample to the human genome (build hg19) and identified transcripts in both patient and controls with STAR workflow. We applied a machine learning approach to eliminate targets with redundant miRNA-mediated control. This strategy finds a convergence on the Myb oncogene and less prominent effects on the Hpb1 transcription factor. The abundance of both genes is increased in T-ALL and each can promote T-ALL in vivo. Conclusion: Our study reveals a Myc regulated network of tumor suppressor miRNAs in T-ALL. We identified a small number of functionally validated tumor suppressor miRNAs. These miRNAs are repressed upon Myc activation and this links their expression directly to Myb a key oncogenic driver in T-ALL. Overall design: Examination of global gene expression in 9 T-ALL patients and 4 normal controls using total RNA sequencing. BaseMeanA in DESeq_results.xlsx is the control.
Characterization of a set of tumor suppressor microRNAs in T cell acute lymphoblastic leukemia.
No sample metadata fields
View Samples