Seed germination is a critical developmental process in plant propagation. Knowledge of the gene expression patterns in this critical process is important in order to understand the main biochemical reactions involved in successful germination, specially for economically relevant plants such as Maize.
Expression profile of maize (Zea mays L.) embryonic axes during germination: translational regulation of ribosomal protein mRNAs.
Treatment, Time
View Samplesp63 mutations have been associated with several human hereditary disorders characterized by ectodermal dysplasia such as EEC syndrome, ADULT syndrome and AEC syndrome . The location and functional effects of the mutations that underlie these syndromes reveal a striking genotype-phenotype correlation. Unlike EEC and ADULT that result from missense mutations in the DNA-binding domain of p63, AEC is solely caused by missense mutations in the SAM domain of p63. We report a study on the TAp63a isoform, the first to be expressed during development of the embryonic epithelia, and on its naturally occurring Q540L mutant derived from an AEC patient. To assess the effects of the Q540L mutation, we generated stable cell lines expressing TAp63a wt, DeltaNp63 alpha or the TAp63 alpha-Q540L mutant protein and used them to systematically compare the cell growth regulatory activity of the mutant and wt p63 proteins and to generate, by microarray analysis, a comprehensive profile of differential gene expression. We found that the Q540L substitution impairs the transcriptional activity of TAp63a and causes misregulation of genes involved in the control of cell growth and epidermal differentiation.
The Hay Wells syndrome-derived TAp63alphaQ540L mutant has impaired transcriptional and cell growth regulatory activity.
No sample metadata fields
View SamplesObjective: the objective of this work was to determine different gene expression patterns in small bowel grafts biopsies with “minimal changes” histology that could identify patients with high rejection risk Methods: 24 samples (17 stable and 7 non stable grafts) from 8 adult patients with small bowel transplantation were included for RNA-Sequencing.Total RNA extracted from intestinal biopsies was used with the TruSeq RNA Sample Preparation v2 Kit to construct index-tagged cDNA libraries. Libraries were sequenced on the Genome Analyzer IIx following the standard RNA sequencing protocol with the TruSeq SBS Kit v5. Fastq files containing reads for each library were extracted and demultiplexed using Casava v1.8.2 pipeline. Sequencing adapter contaminations were removed from reads using Cutadapt software v1.6 and the resulting reads were aligned to the reference human genome (Ensembl gene-build GRCh37.75) using TopHat2 v2.0.13. Gene expression values were calculated as counts using HTSeq v0.6.1. Only genes with at least 1 count per million in all samples were considered for statistical analysis. Data were then normalized and differential expression tested using the R Bioconductor package edgeR. We selected all biopsies from 4 of the patients (18 biopsies, 11 stable and 7 non stable) as the discovery set. The other 6 biopsies from 4 patients (all stable) were used as the test set. Differences in the discovery set were tested by generalized linear model analysis,and results were considered significant when the Benjamini-Hochberg adjusted p-value was < 0,05. Results: We obtained 816 differentially expressed genes (DEGs) between stable and non stable biopsies in the discovery set: 369 upregulated and 447 downregulated in the non stable group. The classification and prediction with the Nearest Shrunken Centroids method identified 5 genes (ADH1C, CYP4F2, PDZK1, SLC39A4 and OPTN) from the 816 DEGs that could classify both groups with an error rate of 11% and classified correctly all samples from the test set. These results were confirmed by Supoprted Vector Machine (SVM), bagSVM and Random Forest methods, showing high accuracy, sensitivity and specificity. Conclusions: We identified 5 genes from the DEGs as possible biomarkers to classify patients with normal histology that could be however in a higher risk of rejection. In this way, gene expression assays are powerful tools with high sensitivity that allow more accurate diagnosis. Overall design: The study included 24 samples from 8 adult patients with small bowel transplantation. Samples correspond to RNA extracted from intestinal biopsies obtained at different post-transplantation time. All biopsies have an histological diagnosis of "minimal changes" and they were classified in two groups according their immunological stability (stable and non stable). Stable group comprised biopsies of patients that never rejected and biopsies obtained at least 15 days after rejection if no other rejection episode occurred in at least the next six months. Non stable group included biopsies obtained between rejection episodes (separated less than six months) and also those biopsies collected within the 15 days before the first rejection episode.
5-gene differential expression predicts stability of human intestinal allografts.
No sample metadata fields
View SamplesOchratoxin A gene expression profiling in liver and kidney, with time points of exposure from 7 days to 12 motnhs
A toxicogenomics approach to identify new plausible epigenetic mechanisms of ochratoxin a carcinogenicity in rat.
No sample metadata fields
View SamplesEwing's Sarcoma cell lines were made resistant to different IGF-1R drugs to investigate mechanisms and pathways modulated by the resistance.
Identification of common and distinctive mechanisms of resistance to different anti-IGF-IR agents in Ewing's sarcoma.
Cell line
View SamplesA catalytic role has been proposed in neoplastic angiogenesis and cancer progression for bone marrow-derived endothelial progenitor cells (EPCs). However, in preclinical and clinical studies the quantitative role of marrow-derived EPCs in cancer vascularization was found to be extremely variable. Adipose tissue represents an attractive source of autologous adult stem cells due to its abundance and surgical accessibility. CD34+cells from Lipotransfer aspirates (LAs) of patients undergoing breast reconstruction after breast cancer surgery were compared with CD34+ cells from Leucapheresis of normal subjects.
The white adipose tissue used in lipotransfer procedures is a rich reservoir of CD34+ progenitors able to promote cancer progression.
Sex
View SamplesPhotoreceptor disorders are collectively known as retinal degeneration (RD), and include retinitis pigmentosa (RP), cone-rod dystrophy and age related macular degeneration (AMD). These disorders are largely genetic in origin; individual mutations in any one of >200 genes cause RD, making mutation specific therapies prohibitively expensive. A better treatment plan, particularly for late stage disease, may involve stem cell transplants into the photoreceptor or ganglion cell layers of the retina. Stem cells from young mouse retinas can be transplanted, and can form photoreceptors in adult retinas. These cells can be grown in tissue culture, but can no longer form photoreceptors. We have used microarrays to investigate differences in gene expression between cultured retinal progenitor cells (RPCs) that have lost photoreceptor potential, postnatal day 1 (pn1) retinas and the postnatal day 5 (pn5) retinas that contain transplantable photoreceptors. We have also compared FACS sorted Rho-eGFP expressing rod photoreceptors from pn5 retinas with Rho-eGFP negative cells from the same retinas. We have identified over 300 genes upregulated in rod photoreceptor development in multiple comparisons, 37 of which have been previously identified as causative of retinal disease when mutated. It is anticipated that this research should bring us closer to growing photoreceptors in culture and therefore better treatments for RD. This dataset is also a resource for those seeking to identify novel retinopathy genes in RD patients.
Gene expression changes during retinal development and rod specification.
No sample metadata fields
View SamplesRecurrent venous thromboembolism (VTE) occurs infrequently following a provoked event but occurs in up to 30% of individuals following an initial unprovoked event. We studied 134 patients with VTE separated into 3 groups: (1) low-risk patients had 1 provoked VTE; (2) moderate-risk patients had no more than 1 unprovoked VTE; (3) high-risk patients had 2 unprovoked VTE. 44 individuals with no history of VTE were enrolled as healthy controls. Consented individuals were enrolled at 4 medical centers in the US. Total RNA from whole blood was isolated and hybridized to Illumina HT-12 V4 Beadchips to assay whole genome expression. Using class prediction analysis, we distinguished high-risk patients from healthy controls with good receiver operating curve characteristics (AUC=0.88). We also distinguished high-risk from low-risk individuals, moderate-risk individuals from healthy controls, and low-risk individuals from healthy controls with AUCs of 0.72, 0.77 and 0.72, respectively. Using differential expression analysis, we identified genes relevant to coagulation, immune response and vascular biology, such as SELP and CD46, which were differentially expressed in at least two comparisons. Neither approach distinguished the moderate-risk patients from the high-risk or low-risk groups. Gene expression profiles may provide insights into biological mechanisms associated with patients at risk for recurrent VTE. Prospective studies are needed to validate these findings.
Whole blood gene expression profiles distinguish clinical phenotypes of venous thromboembolism.
Specimen part
View SamplesPurpose: Here we describe the modulation of a gene expression program involved in cell fate. Methods: We depleted U2AF1 in human induced pluripotent stem cells (hiPSCs) to the level found in differentiated cells using an inducible shRNA system, followed by high-throughput RNAseq, revealing a gene expression program involved in cell fate determination. Results: Approximately 85% of the total raw reads were mapped to the human genome sequence (GRCh37), giving an average of 200 million human reads per sample for total RNA and 15 million human reads per sample for small RNA libraries. Conclusions: Our results show that transcriptional control of gene expression in hiPSCs can be set by the CSF U2AF1, establishing a direct link between transcription and AS during cell fate determination. Overall design: hiPSCs were differentiated into the three germ layers following the described protocol in the study (Gifford et al., 2013).
The core spliceosomal factor U2AF1 controls cell-fate determination via the modulation of transcriptional networks.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Activated stress response pathways within multicellular aggregates utilize an autocrine component.
No sample metadata fields
View Samples