Objective: the objective of this work was to determine different gene expression patterns in small bowel grafts biopsies with “minimal changes” histology that could identify patients with high rejection risk Methods: 24 samples (17 stable and 7 non stable grafts) from 8 adult patients with small bowel transplantation were included for RNA-Sequencing.Total RNA extracted from intestinal biopsies was used with the TruSeq RNA Sample Preparation v2 Kit to construct index-tagged cDNA libraries. Libraries were sequenced on the Genome Analyzer IIx following the standard RNA sequencing protocol with the TruSeq SBS Kit v5. Fastq files containing reads for each library were extracted and demultiplexed using Casava v1.8.2 pipeline. Sequencing adapter contaminations were removed from reads using Cutadapt software v1.6 and the resulting reads were aligned to the reference human genome (Ensembl gene-build GRCh37.75) using TopHat2 v2.0.13. Gene expression values were calculated as counts using HTSeq v0.6.1. Only genes with at least 1 count per million in all samples were considered for statistical analysis. Data were then normalized and differential expression tested using the R Bioconductor package edgeR. We selected all biopsies from 4 of the patients (18 biopsies, 11 stable and 7 non stable) as the discovery set. The other 6 biopsies from 4 patients (all stable) were used as the test set. Differences in the discovery set were tested by generalized linear model analysis,and results were considered significant when the Benjamini-Hochberg adjusted p-value was < 0,05. Results: We obtained 816 differentially expressed genes (DEGs) between stable and non stable biopsies in the discovery set: 369 upregulated and 447 downregulated in the non stable group. The classification and prediction with the Nearest Shrunken Centroids method identified 5 genes (ADH1C, CYP4F2, PDZK1, SLC39A4 and OPTN) from the 816 DEGs that could classify both groups with an error rate of 11% and classified correctly all samples from the test set. These results were confirmed by Supoprted Vector Machine (SVM), bagSVM and Random Forest methods, showing high accuracy, sensitivity and specificity. Conclusions: We identified 5 genes from the DEGs as possible biomarkers to classify patients with normal histology that could be however in a higher risk of rejection. In this way, gene expression assays are powerful tools with high sensitivity that allow more accurate diagnosis. Overall design: The study included 24 samples from 8 adult patients with small bowel transplantation. Samples correspond to RNA extracted from intestinal biopsies obtained at different post-transplantation time. All biopsies have an histological diagnosis of "minimal changes" and they were classified in two groups according their immunological stability (stable and non stable). Stable group comprised biopsies of patients that never rejected and biopsies obtained at least 15 days after rejection if no other rejection episode occurred in at least the next six months. Non stable group included biopsies obtained between rejection episodes (separated less than six months) and also those biopsies collected within the 15 days before the first rejection episode.
5-gene differential expression predicts stability of human intestinal allografts.
No sample metadata fields
View SamplesSeed germination is a critical developmental process in plant propagation. Knowledge of the gene expression patterns in this critical process is important in order to understand the main biochemical reactions involved in successful germination, specially for economically relevant plants such as Maize.
Expression profile of maize (Zea mays L.) embryonic axes during germination: translational regulation of ribosomal protein mRNAs.
Treatment, Time
View SamplesPurpose: Here we describe the modulation of a gene expression program involved in cell fate. Methods: We depleted U2AF1 in human induced pluripotent stem cells (hiPSCs) to the level found in differentiated cells using an inducible shRNA system, followed by high-throughput RNAseq, revealing a gene expression program involved in cell fate determination. Results: Approximately 85% of the total raw reads were mapped to the human genome sequence (GRCh37), giving an average of 200 million human reads per sample for total RNA and 15 million human reads per sample for small RNA libraries. Conclusions: Our results show that transcriptional control of gene expression in hiPSCs can be set by the CSF U2AF1, establishing a direct link between transcription and AS during cell fate determination. Overall design: hiPSCs were differentiated into the three germ layers following the described protocol in the study (Gifford et al., 2013).
The core spliceosomal factor U2AF1 controls cell-fate determination via the modulation of transcriptional networks.
No sample metadata fields
View SamplesEwing's Sarcoma cell lines were made resistant to different IGF-1R drugs to investigate mechanisms and pathways modulated by the resistance.
Identification of common and distinctive mechanisms of resistance to different anti-IGF-IR agents in Ewing's sarcoma.
Cell line
View SamplesA catalytic role has been proposed in neoplastic angiogenesis and cancer progression for bone marrow-derived endothelial progenitor cells (EPCs). However, in preclinical and clinical studies the quantitative role of marrow-derived EPCs in cancer vascularization was found to be extremely variable. Adipose tissue represents an attractive source of autologous adult stem cells due to its abundance and surgical accessibility. CD34+cells from Lipotransfer aspirates (LAs) of patients undergoing breast reconstruction after breast cancer surgery were compared with CD34+ cells from Leucapheresis of normal subjects.
The white adipose tissue used in lipotransfer procedures is a rich reservoir of CD34+ progenitors able to promote cancer progression.
Sex
View SamplesPyrazinamide (PZA) is one of the first line antibiotics used for the treatment of tuberculosis (TB). we have used human monocyte and a mouse model of pulmonary TB to investigate whether treatment with PZA, in addition to its known anti-mycobacterial properties, modulate the host immune response during Mycobacterium tuberculosis (Mtb) infection.
Host targeted activity of pyrazinamide in Mycobacterium tuberculosis infection.
Specimen part, Treatment, Time
View SamplesAMP-18 inhibits growth of cancer cells, but stimulates growth of normal cell lines. Microarray assay was performed to identify gene expression profiles between a head/neck cancer.
A Novel Peptide for Simultaneously Enhanced Treatment of Head and Neck Cancer and Mitigation of Oral Mucositis.
Specimen part, Cell line
View SamplesAdenoid cystic carcinoma (ACC) is one of the most common malignancies that arise in the salivary glands, with an incidence of 4.5 per 1,000,000. It can also arise in glandular tissue closely related to salivary glands in the lacrimal gland, nasal passages and tracheobronchial tree, as well as in glands of the breast and vulva. At all of these sites, it is characterized by a distinctive histology of basaloid epithelial cells arranged in cribriform or tubular patterns, usually demonstrating abundant hyaline extracellular matrix secretion and some degree of myoepithelial differentiation. ACC is generally a slow-growing tumor characterized by a protracted clinical course, usually well over 5 years in duration, marked by regional recurrence, distant metastasis and/or spread along peripheral nerves. A recurrent chromosomal translocation, t(6;9)(q23;p21), has been identified in ACC, and recently it has been discovered that in a majority of ACC the MYB gene on chromosome 6 is fused to the 3 terminus of the NFIB gene on chromosome 9, creating a fusion gene product resulting in increased MYB-related transcriptional activation. Recently it has been determined that most cell lines with attribution of ACC derivation are either contaminants of other cell lines or do not have the characteristic MYB-NFIB translocation. Also, there are no animal models of this histologically and genetically defined tumor type. To address the paucity of experimental and pre-clinical models systems of ACC, we have for several years been establishing xenograft tumor lines from clinical samples of ACC. We describe our experience with these models and their characterization here.
Development and characterization of xenograft model systems for adenoid cystic carcinoma.
Specimen part
View SamplesGenes encoding subunits of SWI/SNF (BAF) chromatin remodeling complexes are collectively altered in over 20% of all human malignancies, but the mechanisms by which these complexes alter chromatin to modulate transcription and control cell fate are poorly understood. Utilizing both loss-of-function and gain-of-function approaches, here we show that SWI/SNF complexes are preferentially targeted to distal enhancers and interact with p300 to regulate transcription via modulation of histone H3 lysine 27 acetylation. We identify a greater requirement for SWI/SNF at typical enhancers than at most super-enhancers and at enhancers in untranscribed regions than in transcribed regions. Our data further demonstrate that SWI/SNF-dependent distal enhancers are essential for controlling expression of genes linked to developmental processes. Our findings thus establish SWI/SNF complexes as regulators of the enhancer landscape and provide insight into the roles of SWI/SNF in cellular fate control. Overall design: RNA-seq in Mouse Embryonic Fibroblasts in WT condition and for knockouts of different SWI/SNF complex subunits.
The SWI/SNF chromatin remodelling complex is required for maintenance of lineage specific enhancers.
No sample metadata fields
View SamplesChromatin modifiers regulate lifespan in several organisms, raising the question of whether changes in chromatin states in the parental generation could be incompletely reprogrammed in the next generation and thereby affect the lifespan of descendents. The histone H3 lysine 4 trimethylation (H3K4me3) complex composed of ASH-2, WDR-5, and the histone methyltransferase SET-2 regulates C. elegans lifespan. Here we show that deficiencies in the H3K4me3 chromatin modifiers ASH-2, WDR-5, or SET-2 in the parental generation extend the lifespan of descendents up until the third generation. The transgenerational inheritance of lifespan extension by members of the ASH-2 complex is dependent on the H3K4me3 demethylase RBR-2, and requires the presence of a functioning germline in the descendents. Transgenerational inheritance of lifespan is specific for the H3K4me3 methylation complex and is associated with epigenetic changes in gene expression. Thus, manipulation of specific chromatin modifiers only in parents can induce an epigenetic memory of longevity in descendents.
Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans.
No sample metadata fields
View Samples