The root cap-specific conversion of the auxin precursor indole-3-butyric acid (IBA) into the main auxin indole-3-acetic acid (IAA) generates a local auxin source which subsequently modulates both the periodicity and intensity of auxin response oscillations in the root tip of Arabidopsis, and consequently fine-tunes the spatiotemporal patterning of lateral roots. To explore downstream components of this signaling process, we investigated the early transcriptional regulations happening in the root tip during IBA-to-IAA conversion in Col-0 and ibr1 ibr3 ibr10 triple mutant after 6 hours of IBA treatment.
Root Cap-Derived Auxin Pre-patterns the Longitudinal Axis of the Arabidopsis Root.
Age, Specimen part, Treatment
View SamplesAbstract: Interleukin-10-deficient (Il10-/-) mice serve as a model for inflammatory bowel disease (IBD). The severity of colitis strongly depends on the inbred strain carrying the disrupted Il10 gene: C3H/HeJBir (C3) confers disease susceptibility, whereas C57BL/6J (B6) confers resistance. Genome-wide scans with microsatellite markers on segregrating backcross and F2 populations resulted in the detection of ten colitogenic quantitative trait loci (QTL). The aim of this study was to reduce the large number of candidate genes within the QTL intervals by identifying those genes which are located within the candidate gene intervals and which are differentially expressed in the colon of IBD-susceptible and -resistant strains. Using this combination of QTL mapping and microarray analysis, we identified 16 genes which were differentially expressed between B6- and C3-Il10-/- mice and were located within the candidate gene intervals. Three of these genes (Pla2g2a, Gbp1, Cd14) showed prominent differences in expression levels between B6- and C3-Il10-/- as well as between B6 and C3 wildtype mice and were considered to be major candidate genes. Pla2g2a and Gbp1 are known to be polymorphic between C3 and B6 mice. Expression data for Cd14 were confirmed by real-time RT PCR using specified pathogen free and germfree Il10-/- mice. In conclusion, the large number of candidate genes was reduced to three major candidates by using a combination of QTL mapping and microarray analysis. All three genes play an important role in inflammatory processes and immune response.
Cd14, Gbp1, and Pla2g2a: three major candidate genes for experimental IBD identified by combining QTL and microarray analyses.
No sample metadata fields
View SamplesExpression data from 22 human myotubes (7 healthy controls, 4 Dysferlinopathy (DYSF), 4 Caveolinopathy 3 (CAV3), 4 Facioscapulohumeral muscular dystrophy(FSHD) and 3 Four and a half LIM 1 protein deficiency FHL1).cDNA microarray data showed that cyclin A1 levels are specifically elevated in FSHD vs. other muscular disorders such as CAV3, DYSF, FHL1 and healthy control. Data could be confirmed with RT-PCR and Western blot analysis showing up-regulated levels of cyclin A1 also on the protein level.
Altered expression of cyclin A 1 in muscle of patients with facioscapulohumeral muscle dystrophy (FSHD-1).
Age, Specimen part, Disease, Disease stage
View SamplesBile acids are steroid compounds from the digestive tracts of vertebrates that enter agricultural environments in unusual high amounts with manure. Bacteria degrading bile acids can readily be isolated from soils and waters including agricultural areas. Under laboratory conditions, these bacteria transiently release steroid compounds as degradation intermediates into the environment. These compounds include androstadienediones (ADDs), which are C19-steroids with potential hormonal effects. Experiments with Caenorhabditis elegans showed that ADDs derived from bacterial bile acid degradation had effects on its tactile response, reproduction rate, and developmental speed. Additional experiments with a deletion mutant as well as transcriptomic analyses revealed that these effects might be conveyed by the putative testosterone receptor NHR-69. Soil microcosms showed that the natural microflora of agricultural soil is readily induced for bile acid degradation accompanied by the transient release of steroid intermediates. Establishment of a model system with a Pseudomonas strain and C. elegans in sand microcosms indicated transient release of ADDs during the course of bile acid degradation and negative effects on the reproduction rate of the nematode. This proof-of-principle study points at bacterial degradation of manure-derived bile acids as a potential and so-far overlooked risk for invertebrates in agricultural soils. Overall design: Two strains (N2 Bristol variety; nhr-69 deletion mutant, nhr-69(ok1926) I); two experimental conditions (control/test conditions: without/with 5 µM of the ADD 7a-HADD); 2-3 biological replicates per experimental condition; four contrasts between test and control conditions or strains functionally analyzed. Please note that differential gene expression data calculated between samples, as indicated in the processed data file names, is provided as Series supplementary file.
Steroids originating from bacterial bile acid degradation affect Caenorhabditis elegans and indicate potential risks for the fauna of manured soils.
Specimen part, Treatment, Subject
View Samples