This SuperSeries is composed of the SubSeries listed below.
The mammalian TRIM-NHL protein TRIM71/LIN-41 is a repressor of mRNA function.
Specimen part, Cell line
View SamplesWe identify mammalian TRIM71 as repressor of mRNAs that inhibits translation and affects mRNA stability.
The mammalian TRIM-NHL protein TRIM71/LIN-41 is a repressor of mRNA function.
Cell line
View SamplesWe identify mammalian TRIM71 as repressor of mRNAs that inhibits translation and affects mRNA stability. In this data set we compare the expression profile of mouse ES upon Trim71 KD versus that of the parental cells.
The mammalian TRIM-NHL protein TRIM71/LIN-41 is a repressor of mRNA function.
Specimen part
View SamplesThe TRIM-NHL protein Brain tumor (Brat) acts as a tumor suppressor in the Drosophila brain, but how it suppresses tumor formation is not completely understood. Here, we combine temperature controlled brat RNAi with transcriptome analysis to identify the immediate brat targets in Drosophila neuroblasts. Besides the known target Deadpan (Dpn), our experiments identify the transcription factor Zelda (Zld) as a critical target of brat. Our data show that Zld is expressed in neuroblasts and required to allow re-expression of Dpn in transit amplifying intermediate neural progenitors. Upon neuroblast division, Brat is enriched in one daughter cell where its NHL domain directly binds to specific motifs in the 3'UTR of dpn and zld mRNA to mediate their degradation. In brat mutants, both Dpn and Zld continue to be expressed, but inhibition of either transcription factor prevents tumorigenesis. Our genetic and biochemical data indicate that Dpn inhibition requires higher Brat levels than Zld inhibition and suggest a model where stepwise post-transcriptional inhibition of distinct factors ensures sequential generation of fates in a stem cell lineage. Overall design: Comparison of transcriptomes of Drosophila melanogaster control and brat RNAi larval brain type II neural stem cell lineages.
The tumor suppressor Brat controls neuronal stem cell lineages by inhibiting Deadpan and Zelda.
Specimen part, Subject
View SamplesThe Drosophila TRIM-NHL protein Brain tumor (Brat) plays important roles during early embryogenesis, in cell fate decisions, during neurogenesis and in mature neurons. Brat is an RNA-binding protein and functions as translational repressor. However, which RNAs Brat regulates and how RNA-binding specificity is achieved, is unknown. Using RNA-Immunoprecipitation we identify Brat-bound mRNAs in Drosophila embryos and define a consensus binding motif.
The Crystal Structure of the NHL Domain in Complex with RNA Reveals the Molecular Basis of Drosophila Brain-Tumor-Mediated Gene Regulation.
Specimen part
View SamplesA study evaluating the effect of stress resistance selection of Drosophila melanogaster.
Gene expression profile analysis of Drosophila melanogaster selected for resistance to environmental stressors.
No sample metadata fields
View SamplesTranscriptional variation, also called expression level polymorphism (ELP), contributes to intra-specific phenotypic variation in many organisms. Differentially expressed transcripts are typically enriched for stress-related genes, suggesting that differences in response to the environment are a particularly common point of divergence among gentoypes. Analysis of ELPs also has been suggested as a way to assess unintended consequences of transgene introduction; however, it is important that interpretation of transcriptional changes be performed within the context of potential fitness effects. In these studies we sought to examine differential gene expression in response to salinity for two widely used Arabidopsis thaliana ecotypes, Wassilewskija (Ws) and Columbia (Col), and a single gene mutation (glabrous, gl1-1) in the Col background (Col(gl)), in relation to genetic, phenotypic, and fitness differences.
Global gene expression analysis of transgenic, mannitol-producing, and salt-tolerant Arabidopsis thaliana indicates widespread changes in abiotic and biotic stress-related genes.
Age, Specimen part
View SamplesMannitol is a putative osmoprotectant contributing to salt tolerance in several species. Arabidopsis plants transformed with the mannose-6-phosphate reductase (M6PR) gene from celery were dramatically more salt tolerant (at 100mM NaCl) as exhibited by reduced salt injury, less inhibition of vegetative growth, and increased seed production relative to the wild type (WT). When treated with 200mM NaCl, transformants produced no seeds, but did bolt, and exhibited less chlorosis/necrosis and greater survival and dry weights than the WT. Without salt there were no M6PR effects on growth or phenotype, but expression levels of 2272 genes were altered. Many fewer differences (1039) were observed between M6PR and WT plants in the presence of salt, suggesting that M6PR pre-conditioned the plants to stress. Previous work suggested that mannitol is an osmoprotectant, but mannitol levels are invariably quite low, perhaps inadequate for osmoprotectant effects. In this study, transcriptome analysis reveals that the M6PR transgene activated the downstream abscisic acid (ABA) pathway by up-regulation of ABA receptor genes (PYL4, PYL5, and PYL6) and down-regulation of protein phosphatase 2C genes (ABI1 and ABI2). In the M6PR transgenic lines there were also increases in transcripts related to redox and cell wall-strengthening pathways. These data indicate that mannitol-enhanced stress tolerance is due at least in part to increased expression of a variety of stress-inducible genes.
Global gene expression analysis of transgenic, mannitol-producing, and salt-tolerant Arabidopsis thaliana indicates widespread changes in abiotic and biotic stress-related genes.
Age, Specimen part
View SamplesEngineered abiotic stress resistance is an important target for increasing agricultural productivity.There are concerns, however, regarding possible ecological impacts of transgenic crops. In contrast to the first wave of transgenic crops, many abiotic stress resistance genes can initiate
Comparison of salt stress resistance genes in transgenic Arabidopsis thaliana indicates that extent of transcriptomic change may not predict secondary phenotypic or fitness effects.
Age, Specimen part, Treatment
View SamplesWe used microarrays to investigate the transcriptome of 6 days old male flies exposed to either 15 or 25 C development at either constant or fluctuating temperatures. Further, we investigated gene expression at benign (20C) and high (35C) temperatures
Thermal fluctuations affect the transcriptome through mechanisms independent of average temperature.
Sex
View Samples