The study was aimed at identifying genes directly or indirectly regulated by miR-205 in the prostate. To this purpose, DU145 prostate cancer cells, which express miR-205 at very low levels, were transfected with miR-205 synthetic precursor and consequent alterations of gene expression analyzed using a microarray approach.
miR-205 Exerts tumor-suppressive functions in human prostate through down-regulation of protein kinase Cepsilon.
No sample metadata fields
View SamplesMouse Bcell, upon ectopic expression of the transcription factor Cebpa for 18h, can be reprogrammed to iPS with extremely high efficiency. To understand the molecular control of this phenomena we performed multiple high throughtput functionnal genomic analysis. Overall design: Transcriptomic by RNAseqencing (polyA+, non stranded) in Bcell, Bcell+Cebpa18h, Bcell+Cebpa18h+OKSM1d, Bcell+Cebpa18h+OKSM2d, ES cells
C/EBPα creates elite cells for iPSC reprogramming by upregulating Klf4 and increasing the levels of Lsd1 and Brd4.
No sample metadata fields
View SamplesWe report that combining NGN2 programming with SMAD and WNT inhibition generates patterned induced neurons (hpiNs).Transcriptional analyses showed that hpiN cultures contained cells along a developmental continuumranging from poorly differentiated neuronal progenitors to well-differentiated, excitatory glutamatergic neurons. The most differentiated neurons could be identified using a CAMK2A::GFP reporter gene. Overall design: RNA sequencing analysis (population and single cell) over hpiNs differentiation time (D0 through D49 after induction). Two independent iPS lines, 9 time points, three replicates each.
Combining NGN2 Programming with Developmental Patterning Generates Human Excitatory Neurons with NMDAR-Mediated Synaptic Transmission.
Specimen part, Disease, Cell line, Subject, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Reprogramming mouse fibroblasts into engraftable myeloerythroid and lymphoid progenitors.
Specimen part
View SamplesHere we show that hematopoietic transcription factors Scl, Lmo2, Runx1 and Bmi1 can convert a developmentally-distant lineage (fibroblasts) into induced hematopoietic progenitors (iHPs). We analyzed transcriptomic data for cell undergoing the transdifferentiation process at several time-points of the process.
Reprogramming mouse fibroblasts into engraftable myeloerythroid and lymphoid progenitors.
Specimen part
View SamplesThe EMT program allows epithelial cells to become endowed with motility, invasiveness and stem cell traits. We investigated difference in signaling networks that are differentially utilized in EMTed and non-EMTed cells, thereby identifying therapeutic targets that are unique to EMT/cancer stem cells.
Protein kinase C α is a central signaling node and therapeutic target for breast cancer stem cells.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Whole-Genome and Epigenomic Landscapes of Etiologically Distinct Subtypes of Cholangiocarcinoma.
Specimen part
View SamplesAnalysis of gene expression in cholangiocarcinoma patients.
Whole-Genome and Epigenomic Landscapes of Etiologically Distinct Subtypes of Cholangiocarcinoma.
Specimen part
View SamplesAnalysis of gene expression in cholangiocarcinoma patients.
Whole-Genome and Epigenomic Landscapes of Etiologically Distinct Subtypes of Cholangiocarcinoma.
Specimen part
View SamplesCirculating tumor cells (CTCs) are the subject of several translational studies and clinical trials because their examination could offer an insight into tumor progression and clinical outcomes. Circulating tumor microemboli (CTM) are clusters of CTCs that have been described as malignant entities for over 50 years, although a comprehensive characterization of these cells is still lacking. Contrary to current consensus, we demonstrate that CTM isolated from colorectal cancer patients are not cancerous, but represent a discrete population of tumor-derived endothelial cells. CTM express epithelial and mesenchymal markers that are consistent with previous reports on circulating tumor cell phenotyping. However, they do not mirror the genetic variations of matching tumors. Transcriptome analysis of single-CTM reveals that these structures exhibit an endothelial phenotype, with further results supporting a tumor-derived endothelial lineage. CTM are widespread in blood sampled from preoperative cancer patients but not in healthy donors, suggesting CTM count as a potential biomarker of interest for colorectal cancer. CTM should not be confused with bona fide circulating epithelial tumor cells. The characterization of tumor derived endothelial cell clusters (TECCs) is likely of high diagnostic value, and may provide direct information about the underlying tumor vasculature at the time of diagnosis, during treatment and the course of the disease. Overall design: Profiling of 18 TECCs/CTM from 8 colorectal cancer patients. In addition profiling of matched 7 normal colonic mucosa, 9 primary colorectal tumor samples (of which three from the same patient), one colorectal cancer metastatis. Additionally, 14 laser-capture-dissected endothelia from the same patients and tissues, and 3 commercially available normal endothelial cell lines
Tumor-derived circulating endothelial cell clusters in colorectal cancer.
No sample metadata fields
View Samples