On the basis of the cell-surface molecule expression, CD16+ monocytes are likely comprised of distinct subpopulations of monocytes rather than a continuum of CD14+ monocytes with differing levels of cell activation. To better study this, we used gene array analysis that compared overall gene expression profiles of CD16+ subpopulations (CD14+CD16+ and CD16+) with that of CD14+CD16-. Gene expression in three FACS-sorted monocyte subsets was assessed by Affymetrix rhesus macaque oligonucleotide gene arrays that contain 52,024 probe sets covering 47,000 monkey genes. There were 29,361 probe sets that expressed in at least one subpopulation (raw array signal intensity > 32). Raw data were processed using robust multi-array average. To identify the most strongly, differentially expressed genes in each subpopulation, we only selected transcripts with consistently greater than four-fold difference (P < .05). In comparison to CD14+CD16- monocyte subset, a large number of genes (9098/29361, 30.9%) were differentially expressed in both CD14+CD16+ and CD16+ subsets: 1999 genes down-regulated; and 7099 genes up-regulated. Altogether, we observed large-scale gene expression differences between the CD14+CD16- subset and the two CD16+ subsets (CD14+CD16+ and CD16+), demonstrating transcriptional heterogeneity. The differential gene expression between CD16- and CD16+ monocytes underscore the fundamental differences between these cells.
Monocyte heterogeneity underlying phenotypic changes in monocytes according to SIV disease stage.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Protection afforded by an HIV vaccine candidate in macaques depends on the dose of SIVmac251 at challenge exposure.
Specimen part
View SamplesThe SIVmac251 macaque model has been used to evaluate the efficacy of vaccine for HIV. Exposure of macaques to a single high dose of SIVmac251 results in transmission of multiple viral variants, which contrasts the few HIV variants typically transmitted in humans. In here, we investigated whether the dose of SIVmac251 challenge affected vaccination efficacy and found that exposure of the immunized macaques to single high dose of SIVmac251 resulted in no vaccine efficacy, whereas exposure to a tenfold lower dose resulted in protection from SIVmac251 acquisition and protection from disease in animals that become infected. The dose of challenge did not affect the expression of inflammatory genes in the gut in acute infection, but at set point, a significant down regulation of interferon responsive genes and up regulation of genes involved in B and T-cell responses, was observed only in vaccinated animals exposed to a lower dose of SIVmac251. Accordingly, in these animals, we also found a significant correlation with vaccine induced T-cell responses and protection from disease. These data demonstrate that the evaluation of the efficacy of vaccine candidates for HIV relies on accurate modeling in macaques to better mimic HIV transmission to humans.
Protection afforded by an HIV vaccine candidate in macaques depends on the dose of SIVmac251 at challenge exposure.
Specimen part
View SamplesThe SIVmac251 macaque model has been used to evaluate the efficacy of vaccine for HIV. Exposure of macaques to a single high dose of SIVmac251 results in transmission of multiple viral variants, which contrasts the few HIV variants typically transmitted in humans. In here, we investigated whether the dose of SIVmac251 challenge affected vaccination efficacy and found that exposure of the immunized macaques to single high dose of SIVmac251 resulted in no vaccine efficacy, whereas exposure to a tenfold lower dose resulted in protection from SIVmac251 acquisition and protection from disease in animals that become infected. The dose of challenge did not affect the expression of inflammatory genes in the gut in acute infection, but at set point, a significant down regulation of interferon responsive genes and up regulation of genes involved in B and T-cell responses, was observed only in vaccinated animals exposed to a lower dose of SIVmac251. Accordingly, in these animals, we also found a significant correlation with vaccine induced T-cell responses and protection from disease. These data demonstrate that the evaluation of the efficacy of vaccine candidates for HIV relies on accurate modeling in macaques to better mimic HIV transmission to humans.
Protection afforded by an HIV vaccine candidate in macaques depends on the dose of SIVmac251 at challenge exposure.
Specimen part
View SamplesThe 1.6 Mbp deletion on chromosome 3q29 is associated with a range of neurodevelopmental disorders, including schizophrenia, autism, microcephaly, and intellectual disability. Despite its importance towards neurodevelopment, the role of individual genes, genetic interactions, and disrupted biological mechanisms underlying the deletion have not been thoroughly characterized. Here, we used quantitative methods to assay Drosophila melanogaster and Xenopus laevis models with tissue-specific individual and pairwise knockdown of 14 homologs of genes within the 3q29 region. We identified developmental, cellular, and neuronal phenotypes for multiple homologs of 3q29 genes, potentially due to altered apoptosis and cell cycle mechanisms during development. Using the fly eye, we screened for 314 pairwise knockdowns of homologs of 3q29 genes and identified 44 interactions between pairs of homologs and 34 interactions with other neurodevelopmental genes. Interestingly, NCBP2 homologs in Drosophila (Cbp20) and X. laevis (ncbp2) enhanced the phenotypes of homologs of the other 3q29 genes, leading to significant increases in apoptosis that disrupted cellular organization and brain morphology. These cellular and neuronal defects were rescued with overexpression of the apoptosis inhibitors Diap1 and xiap in both models, suggesting that apoptosis is one of several potential biological mechanisms disrupted by the deletion. NCBP2 was also highly connected to other 3q29 genes in a human brain-specific interaction network, providing support for the relevance of our results towards the human deletion. Overall, our study suggests that NCBP2-mediated genetic interactions within the 3q29 region disrupt apoptosis and cell cycle mechanisms during development. Overall design: mRNA-sequencing of Drosophila neuron-specific RNAi knockdown (whole head) for four individual 3q29 homologs (DLG1, NCBP2, FBXO45, and PAK2), two pairwise knockdowns of 3q29 homologs (NCBP2/DLG1 and NCBP2/FBXO45), and two VDRC wild-type controls (GD and KK backgrounds). Sequencing was performed using Illumina HiSeq 2000 on three biological replicates per sample, with two-three technical replicates per biological replicate.
NCBP2 modulates neurodevelopmental defects of the 3q29 deletion in Drosophila and Xenopus laevis models.
Specimen part, Subject
View SamplesCross-species comparative gene expression profiling was performed to identify differentially expressed genes conserved in aggressive B lymphomas.
Identification of candidate B-lymphoma genes by cross-species gene expression profiling.
Sex, Specimen part
View SamplesWe performed mRNA-seq of a PRKACA-mutant adrenal tumor and demonstrated that the mutation is expressed at the mRNA level. Overall design: Total RNA obtained from a cortisol-producing adrenal tumor with a PRKACA p.Leu206Arg mutation.
Recurrent activating mutation in PRKACA in cortisol-producing adrenal tumors.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Modeling non-syndromic autism and the impact of TRPC6 disruption in human neurons.
Specimen part
View SamplesiPSC were obtained from DPC from TRPC6-mut patient, a idiopathic autistic patient and a control. Original DPC and iPSC obtained were submited to expression analysis in order to check if the expression pattern obtained for the iPSC cells were closer related to embyonic cells than to the original DPC
Modeling non-syndromic autism and the impact of TRPC6 disruption in human neurons.
Specimen part
View SamplesAs TRPC6 channel induces CREB-mediated trancription, Dental pulp cells from TRPC6-mut patient and from 6 controls were analyzed in order to verify if the disruption of TRPC6 leads to transcriptional changes.
Modeling non-syndromic autism and the impact of TRPC6 disruption in human neurons.
Specimen part
View Samples